
Journal of Information Security and Applications 40 (2018) 20–30 

Contents lists available at ScienceDirect 

Journal of Information Security and Applications 

journal homepage: www.elsevier.com/locate/jisa 

Instance based security risk value estimation for Android applications 

Mahmood Deypir a , Abbas Horri b 

a Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran 
b Department of Computer Engineering, Shahrekord University, Shahrekord, Iran 

a r t i c l e i n f o 

Article history: 

Keywords: 

Android security 

Malwares 

Instance based risk metric 

Decision making 

a b s t r a c t 

Android has emerged as the widest-used operating system for smartphones and mobile devices. Security 

of this platform mainly relies on applications (apps) installed by the device owner since permissions and 

sandboxing have reduced the attack surface. Android antivirus programs detect known malware based 

on their signature, but they cannot detect zero-day viruses. Therefore, estimating security risk could be 

helpful for comparing and selecting apps that are more likely to be malicious or benign based on the 

estimated risk values. Therefore, systematic assistance for making appropriate decisions can significantly 

improve the security of Android-based devices. Additionally, Android markets can leverage estimated risks 

to recognize suspicious apps for further analysis. In this study, a new metric is introduced for effective 

risk estimation of untrusted apps. While previously proposed risk measurements are based on features 

such as permissions and function calls, our devised metric benefits from previously known malicious 

and non-malicious app instances. The metric uses previously identified malware and normal app sam- 

ples to compute the security risk of untrusted apps. Thus, previously known samples are represented 

in the feature space, and for each untrusted input app, the risk is estimated using distances to mali- 

cious and non-malicious app instances. Moreover, to increase the metric’s detection rate, an instance and 

feature weighting schema is suggested. Empirical evaluations on various datasets show that the proposed 

instance-based metric has higher detection rates and is more effective than a previously proposed feature 

based on risk score measurements. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Most capabilities and features of Android based devices for end 

users rely on applications (apps) that can be installed on these 

devices. Anonymous developers or app markets can provide apps. 

Access to various types of services and sensitive information in- 

cluding private personal data, contact lists, geolocation, sent and 

received messages, and social networks can be provided in An- 

droid apps. These types of accessibilities, functionalities, and facil- 

ities make privacy and security issues more challenging. The secu- 

rity architecture of this operating system reduces the attack sur- 

face by restricting applications using permissions and sandboxing. 

Therefore, in order to perform malicious activities such as stealing 

user data, sending premium messages, and making phone calls, an 

attacker must deceive users into installing a malicious app since 

other ways of intrusion are nearly closed in the Android system. 

When installing an app, Android requires the user to grant privi- 

leges through requested permissions. Many applications are devel- 

oped for this operating system, which requires various permissions 

E-mail addresses: mdeypir@ssau.ac.ir (M. Deypir), ahorri@eng.sku.ac.ir (A. Horri). 

based on functionalities. Application permissions are displayed in 

the first screen of the installation program. The end user of an 

Android based mobile device must approve these permissions or 

discard them to install the application. The privileges remain un- 

changed until they are revoked from the app when the user issues 

the app removal process. Although this security mechanism is very 

simple and straightforward for users, it creates many challenges. 

First, a user usually does not spend much time studying permis- 

sions and thinking about their effects, so they tend to go forward 

and to complete the installation process. Moreover, an ordinary 

user does not have the technical skills about Android permissions 

and their impacts. Furthermore, an ordinary or malicious app may 

request similar permissions, making it challenging for end users 

to make a correct decision. Therefore, this security model is inef- 

fective regarding the end user’s security and privacy to preserve 

their personal information from disclosure or to prevent mone- 

tary resource abuse by various types of potential malware. Con- 

sequently, an Android malware, e.g., spyware, Trojan, or Adware, 

can deceive users by introducing itself as a useful app and steal a 

user’s personal or business data as well as use their mobile phone 

credit and money. There exists some research on enhancing the 

Android security model and its security risk communication mech- 

https://doi.org/10.1016/j.jisa.2018.02.002 

2214-2126/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.jisa.2018.02.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2018.02.002&domain=pdf
mailto:mdeypir@ssau.ac.ir
mailto:ahorri@eng.sku.ac.ir
https://doi.org/10.1016/j.jisa.2018.02.002


M. Deypir, A. Horri / Journal of Information Security and Applications 40 (2018) 20–30 21 

anism [1–6] . Examples of such security effort s include using better 

and intuitive titles for permissions, categorizing permissions based 

on their effects, reducing the number of permissions by merging 

similar permissions, utilizing user reviews about apps, and using 

visual security indicators for risky apps. Additionally, several ap- 

proaches have been proposed to measure Android apps’ security 

risk [2,10,31,23] . Based on an effective security risk measure, it is 

possible to compute the security risk of an app and fire a warning 

signal to the user if the computed risk exceeds a predetermined 

threshold. Moreover, users can compare similar apps functionali- 

ties in term of their risk scores. Furthermore, Android markets re- 

quire an effective risk computation metric to identify suspicious 

apps among the vast number of newly submitted apps by devel- 

opers for further examination. Detailed analysis and determinis- 

tic malware detection for each app is very time consuming, and 

systematic filtering of low risk apps is an important requirement. 

However, our evaluations show that current measures and mod- 

els of Android risk computation have unacceptable performance 

that could make end users and Android market trust them. That 

is, they don’t compute relatively high risk values for known mal- 

ware and low risk quantities for benign apps well enough to recog- 

nize malicious apps. In this paper, we propose a new security risk 

score measurement that performs better than previously proposed 

ones. While previous risk measures are mainly feature based, the 

proposed approach is instance based since it benefits from previ- 

ously known malware and goodware samples represented in the 

feature space. It can leverage various feature type including both 

static and dynamic ones. We have shown the proposed metric’s 

effectiveness through extensive experiments on many actual An- 

droid app samples including both malware and goodware. This pa- 

per is organized as follows: In the next section, previous research 

regarding Android security and malware detection are reviewed. 

The problem statement is presented in Section 3 . In Section 4 , the 

formulation of our new security risk score metric is introduced, 

and related algorithms for computing and using it are described. 

Extensive experimental evaluation of the proposed measure with 

respect to previously proposed ones are presented and illustrated 

in Section 5 . These experiments have been performed using known 

malware in the Android world and ordinary useful apps belonging 

to the Google App store. Finally, Section 6 discusses related issues 

and concludes the paper. 

2. Related works 

Quite a bit of research exists regarding the security of mobile 

devices based on Android security architecture. Mobile phone users 

participate in device security by approving requested permissions 

of an app or declining the permissions, which is equal to canceling 

the installation process. Research findings show that most users 

disregard permission checking requested by an Android app. Re- 

searchers are trying to overcome this problem and thus enhance 

the Android security architecture [3–6] . Felt et al. [3] proposed so- 

lutions like changing the categorizations of Android permissions, 

emphasizing the security risk instead of permissions, and approv- 

ing permissions via a specific method. Kelley, Cranor, and Sadeh 

suggest that a high level critical information access regarding user 

privacy including personal data, location information, and contact 

lists should be displayed instead of the permission names in the 

first installation page [7] . Gates et al. recommend visualizing sum- 

mary risk and safety scores in order to reduce the required space 

for displaying permissions and assist the user for fast and effective 

decision making [1] . Such scores are quantities computed based on 

various permissions requested by an app. For most users, display- 

ing a summary of risk or safety scores by graphical indicators are 

more effective than textual information of the permissions in term 

of user notification. Peng et al. [8] introduce statistical measures 

and mining models to compute security risk scores and rank apps 

based on the requested permissions. Their approach ranks appli- 

cations in an Android app store like Google Play based on secu- 

rity risk values. Such a ranking encourages users to select more 

secure apps when there are several apps with the same function- 

ality and different risk scores. Moreover, similar definitions were 

introduced for the concept of security risk regarding the list of per- 

missions requested by apps. Gates et al. [2] extend Peng et al.’s 

[8] work by precisely describing many statistical and probabilis- 

tic generative risk scores for Android apps using permission us- 

age patterns. All measures are defined based on critical permis- 

sions, which is defined as a permission that can access sensitive 

software and hardware mobile resources and their usage patterns 

in malicious apps. Android malware usually abuses critical permis- 

sions and corresponding API functions within its code to perform a 

malicious activity. Gates et al.’s [2] proposed risk scores are gener- 

ative and mainly computed using benign app permission usage in- 

formation. However, to improve performance, the authors increase 

the impact of some critical permissions on the resulting risk score 

values. They manually selected nine critical permissions that can 

be misused by malware. Sarma et al. [10] uses critical permissions 

rarely requested by normal apps to recognize risky apps. Grace 

et al. [31] introduced an automated system called RiskRanker to 

examine whether an app possesses known dangerous behaviors. 

For this purpose, it uses common exploits used in malwares or 

family of them belonging to a specific period of time. Since de- 

terministic detection of zero-day malware requires further analy- 

sis, the system can be used as a preprocessing step to sift through 

a plethora of apps from an Android market by producing a pri- 

oritized list of suspicious apps based on their computed security 

risk. Enck et al. [23] developed the Kirin system to examine com- 

binations of risky permissions to determine whether permissions 

requested by an app satisfy a certain global safety policy. Permis- 

sion combinations e.g., WRITE_SMS and SEND_SMS, are manually 

specified in this system. These combinations could be used in a 

malicious apps and therefore are used to identify malware. 

Literature has proposed several approaches to classify Android 

apps into malware and benign apps [9–11] . The aim is to construct 

a mining model like naïve bayes, based on labeled apps augmented 

by information regarding the static and dynamic behavior of mal- 

ware and clean apps to classify future malware. Other research 

uses static code analysis of decompiled apps to analyze malware’s 

malicious activities and behaviors. In this approach, permission to 

function map is performed as a preprocessing step that recognizes 

which function calls are used and what their ordering is. For exam- 

ple, some malware conducts malicious behaviors such as access- 

ing the contact list or storage and sending a SMS. In static code 

analysis, the extracted knowledge and patterns are used to dis- 

tinguish malicious apps from ordinary applications [12–15] . Mal- 

ware detection and risk score computation based on static source 

code analysis can be regarded as a complementary method for per- 

mission analysis. However, it faces challenges like code obfusca- 

tion and code writing techniques exploited by malware writers. 

Desnos proposed a distance based algorithm for similarity mea- 

surement among Android apps [12] . This algorithm can be utilized 

for malware detection and risk computation. Schmidt et al. pro- 

posed a collaborative architecture for Android malware detection 

using static code analysis [13] . In this architecture, Android based 

devices collaborate together and communicate to a remote server 

to analyze apps and to detect malwares. Similar to RiskRanker sys- 

tem described above, approach devised in [14] uses previous mal- 

ware footprints as well as some heuristic for detecting new un- 

known malicious apps. For malware detection, Aafer et al. [15] pro- 

posed an approach in which a couple of well-known classifiers 

were used and tested on extracted static feature of available mal- 

wares and benign apps. Dynamic behavior analysis of running An- 



https://isiarticles.com/article/101785

