
Journal of Mathematical Economics 72 (2017) 104–111

Contents lists available at ScienceDirect

Journal of Mathematical Economics

journal homepage: www.elsevier.com/locate/jmateco

A one-sided many-to-many matching problem
Yasunori Okumura *
Department of Logistics and Information Engineering, TUMSAT, Japan

a r t i c l e i n f o

Article history:
Received 30 November 2016
Received in revised form 15 June 2017
Accepted 27 July 2017
Available online 4 August 2017

Keywords:
Matching
Market design
Maximum c-matching
Network formation
Strategy-proof

a b s t r a c t

This study discusses a one-sidedmany-to-manymatchingmodel wherein agents may not be divided into
two disjoint sets. Moreover, each agent is allowed to havemultiple partnerships in ourmodel. We restrict
our attention to the case where the preference of each agent is single-peaked over: (i) the total number
of partnerships with all other agents, and (ii) the number of partnerships that the agent has with each of
the other agents. We represent amatching as amultigraph, and characterize amatching that is stable and
constrained efficient. Finally, we show that any direct mechanism for selecting a stable and constrained
efficient matching is not strategy-proof.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This study considers the following problem. Several pre-season
or post-season baseball teams want to play a number of practice
games. A game between two teams is realized if there is consent
from both teams. We call the set of all games played among the
teams matching. Each team has its preference over the set of the
matchings. That is, each team may be particular about the num-
ber of games they play and their opponents. In such a situation,
which matching is stable? Which matching is efficient? Is a stable
matching efficient? In addition, how should an authority design a
matching?

Tounderstand theproblem,we consider a preliminary example.
There are four baseball teams, 1, 2, 3 and 4. All teams are indifferent
on the opponents but team1wants to play four times and the other
teams want to play twice, because of the policies of the directors
of the teams. Then, for example, consider the matching such that
the games between 2 and 3, 2 and 4, and 3 and 4 are, respectively,
played once. The left graph in Fig. 1 depicts the matching where
the nodes represent the teams and an edge between two teams
represents one game between them. Then, this matching can be
considered stable, because teams 2, 3 and 4 do not want to play
anymore, although team 1 does want to play more. However,
the matching is not Pareto efficient. For example, consider a new
matching such that team 1 plays with 2 twice and with 3 and
4 once, respectively, and 3 and 4 play once. The right graph in
Fig. 1 represents the matching. Then, this new matching Pareto
dominates the former matching, because 1 prefers the latter to the
former and the others are indifferent.
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There are severalmatchingmodels that are related to themodel
in this study.1 Themarriagemodel introduced byGale and Shapley
(1962) includes several men and women, and a matching is a set
of couples between a man and a woman. The roommates model
is also introduced by Gale and Shapley (1962). In the model, they
consider a more general situation where the agents may not be
divided into two disjoint sets. In our model, a team can play more
than one game. Themany-to-manymatchingmodel introduced by
Roth (1984, 1985) is another generalization of themarriagemodel.
A typical real world market to which his model can be applied is a
labor market, where a firm can hire a set of workers and a worker
can be employed by a set of firms. However, in the many-to-many
matching model, the agents are divided into two disjoint sets and
an agent can form at most one partnership with another agent. On
the other hand, in our model, the teams may not be divided into
two disjoint sets and a team can play two or more games against
another team. That is, we consider a one-sided matching model
that an agent can form multiple partnerships.

Since a matching can be represented by a graph as that in Fig. 1,
our model can be regarded as a network formation model. See, for
example, Goyal (2007) and Jackson (2008) for the survey of net-
work formation models. Most of the previous studies restrict their
attention to the formation of a simple graph where at most one
edge between two agents exists.2 On the other hand, we consider
the formation of multiple graphs where multiple edges can exist
between two teams, because a team may play with another team

1 See, for example, Roth and Sotomayor (1990) and Roth (2002), for the survey
of the models.
2 Several studies on matching with contracts are exceptions. See, for example,

Hatfield and Kominers (2012) and Hatfield et al. (2013).
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Fig. 1. Preliminary example.

more than once. Moreover, our stability concept is closely related
to those of Dutta and Mutuswami (1997) and Jackson and van den
Nouweland (2005).

Instead of considering a general matching model, we restrict
our attention to a specific preference domain called a doubly single-
peaked domain . That is, the preference of a team over games
played by that team satisfies the following three conditions. First,
condition (P1) is that every team has an ideal number of games
played with each of the other teams. Second, condition (P2) is that
a team is indifferent between any twomatchings inwhich it has the
same total number of games and the number of the games played
with any other team is not over the corresponding ideal number.
Third, condition (P3) is that in the same case, each team has the
ideal total number of games and prefers the matching whose total
number of games is closest to the ideal total number.

The preference domains that are similar to the doubly single-
peaked preference domain are discussed by severalworks on coali-
tion formation such as Banerjee et al. (2001) and Bogomolnaia
and Jackson (2002). Moreover, our model is a generalization of
the roommates model with dichotomous preferences introduced
by Chung (2000) and one of our results is also a generalization of
that of Chung (2000). Bogomolnaia and Moulin (2004) and Roth et
al. (2005) also consider the model and the latter applies it to an
analysis of a pairwise kidney exchange problem.3

In this study, we provide a characterization of individually
rational matchings and that of stable matchings in this class. We
consider two stability concepts called pairwise stability and group
stability. The latter concept is stronger than the former. However,
we show that in the doubly single-peaked domain, the necessary
and sufficient stability conditions are the same between the two
stability concepts.

A matching is said to be constrained efficient if it is not Pareto
dominated by any individually rational matching. We show that
a stable matching may not be constrained efficient. This implies
that a realized matching may not be efficient. Thus, a centralized
matching mechanism to obtain a stable and constrained efficient
matching is necessary.

We represent a matching as a graph as of that in Fig. 1. Specif-
ically, we focus on a subgraph of a compatibility graph, which
reflects the ideal numbers of the games between each pair of
teams. Moreover, we consider a graph in which the degree of each
node i is less than or equal to a certain positive integer ci. Such
a subgraph is called a c-matching of a compatibility graph where
c = (c1, c2, . . . , cn) ∈ Zn

+
and n is the number of teams. Then, we

define c∗∗
=

(
c∗∗

1 , c∗∗

2 , . . . , c∗∗
n

)
where c∗∗

i reflects the preference
of team i and a c∗∗-matching of a compatible graph. We show
that the set of c∗∗-matchings of a compatible graph is equivalent
to that of individually rational matchings. Moreover, a maximum

3 See also Yilmaz (2011), Okumura (2014), Sönmez and Ünver (2014), Anderson
et al. (2015) and Andersson (2015), and Nicolò and Rodríguez-Álvarez (2017) with
regard to the applications.

c-matching is defined as a c-matching with the largest number
of edges.4 We show that a maximum c∗∗-matching is stable and
constrained efficient. Since a computationally efficient method to
derive a maximum c-matching of a graph is known, we can derive
a stable and efficient matching within a reasonable time.

Finally, we provide strategic implications of our model. We
consider a direct mechanism whereby the teams first reveal their
preferences. Unfortunately, we have a negative result. That is,
any direct mechanism for selecting a stable and constrained ef-
ficient matching does not satisfy strategy-proofness even under
the doubly single-peaked preference domain. Hatfield et al. (2014)
also have a similar negative result to ours, but they restrict their
attention to the max–min preference domain that is independent
from ours.

2. Model

Let N = {1, 2, . . . , n} be a set of sports teams. A team can play
several games with another team. Let µij ∈ Z1

+
be the number of

games played between i and j where µij = µji is satisfied for all
i, j ∈ N and µi = (µi1, µi2, . . . , µin) ∈ Zn

+
. We assume µii = 0 for

all i ∈ N . Furthermore, letµ be the n×nmatrix whose (i, j)th entry
is µij. We call µ a matching. Let ci (µ) =

∑
j∈Nµij that represents

the number of games played by i in µ.
We introduce some specific cases of this model. Suppose that

N is divided into two disjoint sets F and M where F ⊂ N and
M = N⧹F , and µ̄ij = 0must be satisfied for any i, j ∈ F or i, j ∈ M .
Then, this specific case is called the two-sided case. Moreover, if
µ̄ij ≤ 1 for all i, j ∈ N must hold, then this case is called the at-
most-one-game case. In the two-sided and at-most-one-game case,
this model is equivalent to the two-sided many-to-many model
discussed by many previous studies.

We consider preferences of teams. Team i has no concern for
µjk for any j, k ̸= i but is concerned with µi. That is, we assume a
preference relation of team i over Zn

+
denoted by ≿i, where µi ≿i

(≻i) µ′

i implies that iweakly (strictly) prefersµi toµ′

i . Additionally,
µi∼iµ

′

i indicates that i is indifferent between µi and µ′

i .
We specify that the preference relation of i satisfies a single-

peaked preference over the number of games it plays where c∗

i ∈

Z1
++

represents the ideal total number of games of i. Moreover,
we also assume that the preference relation of i is also single-
peaked over the number of games that i plays with j. Let µ̄−→

ij ∈ Z1
+

represent i’s ideal number of games played with j.5 Therefore, we
call the preference domain focused on in this study a doubly single-
peaked domain. To be precise, we assume the following conditions.

(P1) If µij ≥ µ̄−→
ij , then µi ≻i (µi1, . . . , µij + 1, . . . , µin).

(P2) Suppose that µ and µ′ satisfy µij ≤ µ̄−→
ij and µ′

ij ≤ µ̄−→
ij for

all j ̸= i, respectively. If ci (µ) = ci
(
µ′

)
, then µi∼iµ

′

i .
(P3) Suppose that µ and µ′ satisfy µij ≤ µ̄−→

ij and µ′

ij ≤ µ̄−→
ij for

all j ̸= i, respectively. If ci
(
µ′

)
< ci (µ) ≤ c∗

i or c∗

i ≤ ci (µ) <

ci
(
µ′

)
, then µi ≻i µ′

i .

The first condition (P1) implies that if µij ≥ µ̄−→
ij , then any

addition of one game between i and j decreases the utility of team
i. This reflects the taste of i for an opponent team represented by
j. For example, if team i wants to play with j as many times as
possible, then µ̄−→

ij is a sufficiently large number such as µ̄−→
ij = c∗

i .
On the other hand, if i does not want to play even one game with

4 Berge (1985, Ch. 8) defines and discusses the c-matchings and maximum c -
matchings.
5 In thismodel, µ̄−→

ij ̸= µ̄−→
ji can be satisfied. For example, consider the casewhere

each team wants to play a game with a strong team. If i is clearly stronger than j,
then µ̄−→

ij < µ̄−→
ji would be satisfied.
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