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a b s t r a c t

The work aims at developing an image analysis procedure able to distinguish high value fillets of Atlantic
cod (Gadus morhua) from those of haddock (Melanogrammus aeglefinus). The images of fresh G. morhua
(n¼ 90) and M. aeglefinus (n¼ 91) fillets were collected by a flatbed scanner and processed at different
levels. Both untreated and edge-based segmented (Canny algorithm) regions of interest were submitted
to surface texture evaluation by Grey Level Co-occurrence Matrix analysis. Twelve surface texture vari-
ables selected by Principal Component Analysis or by SELECT algorithmwere then used to develop Linear
Discriminant Analysis models. An average correct classification rate ranging from 86.05 to 92.31% was
obtained in prediction, irrespective the use of raw or segmented images. These findings pave the way for
a simple machine vision system to be implemented along fish market chain, in order to provide
stakeholders with a simple, rapid and cost-effective system useful in fighting commercial frauds.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of computer vision systems have been investi-
gated and applied in the agri-food system answering the need of
simple, rapid, and non-destructive but reliable evaluation tools for
the assessment of food quality and safety during production and
processing (Ma et al., 2016). The computer vision bases go back to
‘60s (Baxes, 1994), though its implementation in the food industry
grew mainly in the last two decades. Even if food products are
extremely different, computer vision is a cross-approach aiming at
the estimation of color, morphological features and surface texture
characteristics directly linked to food quality and safety.

Few vision systems have been applied in the fishery industry, as
reported in the reviews by Mathiassen et al. (2011), Dowlati et al.
(2012), and Zion (2012). Main applications are devoted to fish
counting, definition of several physical parameters (e.g. length,
width, thickness, volume, weight, perimeter, area, compactness
and roundness) (Balaban and Ayvaz, 2016), gender identification,
chemical, biochemical and sensory quality assessment, as well as
species and stock identification (Mathiassen et al., 2011). They have
been implemented both in aquaculture or fish farm and in indus-
trial conveyor belts during processing operations.

Promising results have been achieved in species identification.
Zion et al. (1999) were able to correctly classify grey mullet images

acquired under different lighting conditions. Storbeck and Daan
(2001) described a system to recognize fish species by computer
vision and a neural network, reaching more than 95% of correctly
classified fish. White et al. (2006) implemented a computer vision
machine to identify andmeasure different species with an accuracy
ranging from 95.8 to 98.8%. Alsmadi et al. (2011) extracted several
features, based on ventral part of fish images, for the differentiation
between fish families, especially between poison and non-poison
families. All these systems are more or less complex and imple-
mented at different levels of the fish market chain, but they all deal
with intact whole fishes. To the best of our knowledge, no systems
have been thought for species identification in fish fillets. However,
the actual food market, driven by consumers’ needs for healthy but
ready-to-cook products, highly demands for fillets more than
whole fishes. Thus, rapid and easy tools for authenticity assessment
of these products are needed to face economic frauds (e.g. the
substitution of valuable species with cheaper ones) along thewhole
fish supply chain.

Even if there are a number of recognized techniques for food
authentication, such as molecular, chromatographic, and isotopic
techniques, genomics, proteomics, vibrational and fluorescence
spectroscopy, NMR and non-chromatographic mass spectrometry
(Danezis et al., 2016), portable technologies for rapid and non-
destructive testing would be advantageous (Stadler et al., 2016).
In particular, vision systems could respond to the need of fast,
reliable, non-destructive, and in situ analyses for fish
authentication.* Corresponding author.
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A fundamental role in computer vision is played by image
analysis, which is composed by three main steps: low-level pro-
cessing (i.e. image acquisition and pre-processing), intermediate-
level processing (i.e. segmentation and object measurement), and
advanced image processing. All these steps should be optimized in
order to meet the defined purpose of the developed computer
vision system, while reducing potential errors and ensuring result
accuracy (Brosnan and Sun, 2004). Thus, the aim of this work was
the development of an image analysis procedure to be imple-
mented in a vision system in order to distinguish high value fillets
of Atlantic cod (Gadus morhua) from those of haddock (Melanog-
rammus aeglefinus).

2. Materials and methods

2.1. Samples

Fresh Gadus morhua (Gm, n¼ 90) and Melanogrammus aeglefi-
nus (Ma, n¼ 91) were provided by a trusted supplier (Copromar
S.r.l., Milan, Italy) in thirteen different batches from March to June
2016. The left fillets were portioned from the whole fishes by
qualified personnel and carried to the university laboratories
ensuring the cold chain. Samples were stored at 4± 1 �C prior to
analyses that were performed within the sampling day.

2.2. Fillet morphological characterization

Themethod proposed byMalandra and Baldisserotto (2014) was
applied to characterize the collected fillets according to their
morphology. It is focused on some characteristics of the external
side of the fillets, fundamental to distinguish G. morhua and
M. aeglefinus. In particular, the analysis of myomeres and myosepta
organization and orientation in the cranial region of the external
side permitted to discriminate the considered species. Indeed the
myosepta are angled against the line of the body with the inner-
most edge nearer the front of the body and the outermost edge
nearer the tail, thus shaping like a “W”. The characteristic “W”

defines three main angles, one for each change of direction, called
dorsal posterior (DP), central anterior (CA) and ventral posterior
(VP). In the cranial region of G. morhua fillets, the W-shaped
myomeres have small angle amplitude, symmetry in DP and VP
angles and DP angle touching the dorsal side by an imaginary line
perpendicular to the lateral line (Fig. 1a). In the cranial region of
M. aeglefinus fillets (Fig. 1b), the W-shaped segments have angles
broader than those in G. morhua and the imaginary line touches
both the PD angle, but in the front side, and the VP angle close to
the lateral line.

2.3. Image analysis

2.3.1. Image low-level processing
The acquisition of the images of each fillet was performedwith a

flatbed scanner (HP Scanjet 8300, HP Inc., Palo Alto, CA, USA),
covering samples with a black box to prevent light losses. Images
were acquired at a resolution of 600 dpi, with a color depth of 48 bit
and saved in uncompressed TIFF format. Image analysis was carried
out on a selected region of interest (ROI; 800� 1200 pixels) crop-
ped in the cranial area of each fillet and converted in grayscale (8
bit).

2.3.2. Image intermediate-level processing
Each image ROI was edge-based segmented through Canny

multi-stage algorithm. The application of this algorithm aimed at
significantly reducing the amount of data by filtering useless in-
formation out while preserving the important structural properties

in the image, represented in this case by the muscular tissue
pattern. In details, Canny edge algorithm consists of: noise reduc-
tion by Gaussian filter; image intensity gradient identification with
four filters to detect horizontal, vertical and diagonal edges in the
blurred image; non-maximum suppression to define a set of edge
points known as “thin edges”; edges’ tracing through a double
thresholding; suppression of all the edges that are weak and not
connected to strong edges by hysteresis (Nosrati et al., 2013).

2.3.3. Image high-level processing
Both untreated and edge-based segmented ROI matrices were

submitted to high level processing, through surface texture evalu-
ation by Grey Level Co-occurrence Matrix (GLCM) analysis and
multivariate analysis.

GLCM, a classical second-order statistical method, was applied
to create a symmetric matrix reporting the frequency of the
different combinations of grey levels co-occurring in the selected
ROIs. Indeed, it calculates how often two pixels with intensity
values i and j (pi,j) at a particular distance (d) along a given direction
(expressed in angles, q) occur in an image. Since the calculation is
strongly affected by pixel pitch and direction, a single GLCM might
not be enough to describe textural features of the input image. For
this reason, 40 GLCMs for a single input image were calculated
considering ten distances (d from 1 to 10 pixels) and all the four
directions (q of 0�, 45�, 90�, 135�). Then, four main texture features
were calculated for each matrix. Texture feature calculation uses
the GLCM to give a measure of the intensity variation among the
pixels of interest (Haralick et al., 1973). In this work, the following
features were calculated:

- Contrast: it measures the intensity contrast between a pixel and
its neighbor over the whole image, evaluating the local variation

Contrast ¼
X
i

X
j

ði� jÞ2pij (1)

It ranges from 0 (for a constant image) to the root mean square of
the size of GLCM-1.

- Correlation: it measures how a pixel is correlated to its neighbor
over the whole image, evaluating the joint probability occur-
rence of specified pixel pairs

Correlation ¼
X
i

X
j

ði� miÞðj� mjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
si2

��
sj2

�q pij (2)

where m and s are mean and standard deviation values, respec-
tively. It ranges between �1 and 1, which stand for a perfectly
negatively or positively correlated image.

- Energy, also known as uniformity or angular second moment: it
returns the sum of squared elements in the GLCM

Energy ¼
X
i

X
j

pij
2 (3)

It ranges from 0 to 1, being 1 the value for a constant image.

- Homogeneity, or Inverse Difference Moment: it measures the
closeness of the distribution of elements in the GLCM to the
GLCM diagonal

Homogeneity ¼
X
i

X
j

1

1þ ði� jÞ2
pij (4)

It ranges from 0 to 1. Homogeneity is 1 for a diagonal GLCM.
Considering these four texture features, twomatrices composed

of 181 samples and 160 variables were obtained for the untreated
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