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The need for research on commodity volatility has grown considerably due to the important role and
financialization of commodities in global asset markets. This paper examines the volatility forecasting perfor-
mance of a wide variety of GARCH-based models in the context of biofuel feedstock markets in the presence of
structural breaks. Our sample is also extended to several non-renewable energy commodities to evaluate com-
paratively the volatility forecasting performance across various commodity markets. The model specifications
allow for different conditional distribution functions in the rolling window estimations. A break detection
algorithm finds significant evidence of structural breaks in the unconditional variance of all commodity returns
under study. The out-of-sample analysis, which is based on an up-to-date model comparison testing procedure,
reveals that volatilitymodels accommodating structural breaks in the data provide the best volatility forecasts for
most cases. Regarding the relevance of distribution functions, the skewed normal distribution dominates in the
model confidence sets. Nevertheless, the complex distribution functions do not always outperform simpler
ones, although true return distribution is asymmetric and heavy-tailed.
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1. Introduction

Research on commodity volatility has been gaining ground due to
increasing volatility and the growing role of commodities in global
asset markets (see Chkili et al., 2014; Kang and Yoon, 2009; Vivian
and Wohar, 2012; among others). As widely documented, accurate
volatility forecasts are important inputs for portfolio optimization,
option pricing, value-at-risk modeling, and dynamic hedging. The
literature on modeling and forecasting volatility in commodity
markets has primarily focused on non-renewable energy and
precious metal commodities (see, e.g., Arouri et al., 2012; Cheong,
2009; Chkili et al., 2014; Charfeddine, 2014; Charles and Darné,
2017; Gong and Lin, 2017a; Harvey and Sucarrat, 2014;
Haugom et al., 2014; Klein and Walter, 2016; Lv and Shan, 2013;
Liu et al., 2017; Narayan and Narayan, 2007; Sadorsky, 2006; and
Wen et al., 2016). In contrast, there has been relatively little research
conducted on modeling and forecasting volatility of biofuel feedstock

markets1 despite the increasing volatility of these markets resulting
from biofuel supportive policies around the globe. Furthermore, a
substantial motivation behind studying these commodities is the
financialization of commodities,which has become evenmore prominent
after the global financial crisis (Cheng and Xiong, 2014). Hence, the main
purpose of this study is to add to the limited literature on volatility fore-
casting performance of biofuel feedstock commodities. In addition, we
have extended our sample to include crude oil and gasoline to compare
volatility forecasting performance across broader commodity markets.

We have focused on the biofuel feedstock commodities that have
highest production volume across the globe. A large number of biofuel
plants that operate on a large scale in the US, Brazil, and someAsian coun-
tries use palm oil and corn as feedstock (see Serra, 2011; Hasanov et al.,
2016). In theUSmarket, the soybean serves as themain feedstock for bio-
fuel productionwhich has surged significantly to 2 BG (billion gallons) by
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1 Biofuel feedstocks are mainly agricultural crops which have both food and energy
uses. The usual types of biofuel are bioethanol and biodiesel. Bioethanol is commonly pro-
duced from energy crops such as corn, wheat, barley and sugar beet in the US, Brazil, and
EU countries. The sugars contained in these crops are altered into ethanol through the fer-
mentation process (The European Renewable Ethanol Association: ePure, n.d.). On the
other hand, biodiesel is an alternative fuel similar to conventionalmineral diesel. Biodiesel
can be produced from edible oils (e.g., palm, rapeseed, and soybean), animal fats, and
waste cooking oil.
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2017 from1 BG in 2012 (Cui andMartin, 2017). The reason of burgeoning
trend in biodiesel supply is catalysed by implementation of renewable
fuel standards. The rapeseed oil contributesmost of the feedstock produc-
tion in the European Union (accounting for approximately 80% of feed-
stock). Globally, the palm oil contributes one-third of global vegetable
oil production and outperform other vegetable oils in terms of growth
rate in the global marketplace (USDA, 2006). Apart from the data of bio-
fuel feedstock commodities, we have also considered the non-
renewable energy commodities for comparison purposes. We use unre-
fined oil (i.e., crude oil) which is main input in the production of petro-
leum products. Also, we include gasoline in our study as it is one of the
refined products. This energy fuel is widely harnessed for the internal
combustion engines for transports (e.g., cars, motorbikes, trucks, boats
and other transport vehicles).

As commonly noted, the correct specification of the conditional
distribution of asset returns is potentially crucial for asset pricing and
option valuation. For example, according to Arrow-Pratt's definition of
risk aversion, for a given mean and variance, a risk-averse investor
does not prefer assetswhose return distributions are negatively skewed
to those that are positively skewed. However, it remains an open ques-
tion as to how important alternative conditional distributions are in
out-of-sample volatility forecasting. Volatility forecasts can be obtained
using different methods, depending on a range of conditional variance
specifications and conditional distribution functions.2 As Chuang et al.
(2007) note, an appropriate distribution function should contain the
following common features. First, the distribution must sufficiently
capture a sizeable range of shapes. Second, shape parameters of a distri-
bution function must reflect the skewness and kurtosis of a return se-
ries. Finally, distribution function parameters should be estimable
using numerical optimization and/or statistical procedures. Although a
sizable number of complex distribution functions are proposed in the
literature (see, for example, Aas and Haff, 2006; Fernandez and Steel,
1998; Ferreira and Steel, 2006; Nelson, 1991; Theodossiou, 1998),
there have been a limited number of studies that investigate the volatil-
ity forecastingperformance of GARCH-based variancemodels combined
with various distribution functions in the context of commodity mar-
kets (with the notable exception of Giot and Laurent, 2003; Lv and
Shan, 2013). Along with the research works by Giot and Laurent
(2003) and Lv and Shan (2013), this paper provides oneof thefirst stud-
ies on the performance of volatility forecasting for commodities under
various conditional distributions. Indeed, our study differs from the
aforementioned papers in several ways. First, aforementioned studies
used quasi maximum likelihood estimations, which are based on only
Gaussian and skewed Student t conditional distributions. In contrast,
our study considers eight different conditional densities. Second, their
study is based on the common loss measures and superior predictive
ability (SPA) test which depend on the benchmark models, while we
use a more recent model confidence set (MCS) procedure proposed by
Hansen et al. (2011). Third, our primary focus is on the biofuel feedstock
markets. Finally, our forecasting experiment accounts for structural
breaks.

Another important phenomenon in return volatility that needs to be
addressed in volatility forecasting is the structural breaks.3 Numerous
theoretical and empirical studies show that estimates of volatility per-
sistence might be spurious if structural changes or regime shifts are

evident in the volatility process (see Gong and Lin, 2017b;
Hammoudeh and Li, 2008; Lamoureux and Lastrapes, 1990; Mikosch
and Stǎricǎ, 2004; Wang and Moore, 2009; Wen et al., 2017; among
others). In light of the above considerations, Rapach and Strauss
(2008) accounted for this phenomenon in the context of conditional
variance forecasting for the exchange rate markets. The authors con-
sider various methods of accommodating potential structural breaks
in unconditional variancewhen evaluating exchange rate return volatil-
ity forecasts in real time. Moreover, our contribution is broadly con-
nected to the study by Arouri et al. (2012). This paper investigates the
relevance of regime shifts and longmemory characteristics in modeling
and forecasting the conditional variances of oil spot and futures prices
utilizing some GARCH-based models. However, in Arouri et al. (2012)
and Rapach and Strauss (2008), the model estimations are solely
based on a Gaussian distribution function. In contrast, our key emphasis
in this study is to evaluate the volatility forecasting performance of con-
ditional variance models estimated assuming a range of distribution
functions in the context of biofuel feedstock markets in the presence
of structural breaks.

A recent trend in literature has suggested that an appropriate model
for the volatility offinancial and commodity returns should combine the
long-memory and structural change phenomena (e.g., Baillie and
Morana, 2009; Belkhouja and Boutahary, 2011; Charfeddine, 2014; Shi
and Ho, 2015; Walther et al., 2017). Long-memory behaviour in
volatility occurs when the influence of volatility shocks decreases
slowly. This behaviour can be observed on the autocorrelation function,
which decays slowly to zero at a polynomial rate as the lag increases.
In this study, to capture the long-memory feature in the squared
returns, we rely on a conditional score model suggested by Harvey
and Sucarrat (2014). Two-component conditional score (i.e., Beta-
skew-t-EGARCH) model accommodates the conditional skewness and
long-memory property by decomposing volatility into the long- and
short-term components (see Sucarrat, 2013). Additionally, the parame-
ters are also estimated using the last post-break period to account for
structural breaks in out-of-sample forecasting analysis.4

The primary objective of this study is to explore the relevance of
structural breaks and distribution functions in forecasting the condi-
tional volatility of biofuel feedstock commodities. We address several
research questions. First, we investigatewhether the forecasting perfor-
mance of GARCH-based models which take into account the structural
breaks in the return series is improved. Second, we analyse the role
of a wide range of distribution functions in volatility forecasting
performance. The recent literature that addresses forecasting commod-
ity market volatility to some extent ignores the combination of struc-
tural breaks, conditional distributions, and asymmetry phenomenon
(i.e., the different influences of positive and negative returns of a similar
magnitude on conditional volatility). Our paper combines these
statistical properties in forecasting the conditional volatility of biofuel
feedstock commodities, which include both food and biofuel uses.
Finally, a relatively recent conditional score model (i.e., Beta-t-skew-
EGARCH) proposed by Harvey and Sucarrat (2014) is employed,
which is not investigated in forecasting literature as much as other
GARCH-type of models considered in this study.

The remainder of this paper is organized as follows. Section 2 intro-
duces the methodology and methods, including model specifications,
conditional distributions, the estimation method, structural break test,
out-of-sample testing procedure, and the loss functions. Here, we also
briefly present the MCS procedure proposed by Hansen et al. (2011)
to assess volatility forecasting performance. Section 3 includes data
and descriptive statistics. Section 4 presents the out-of-sample forecast-
ing results and discussion, and robustness checks. Lastly, Section 5
presents the paper's conclusions and implications.

2 There are many applications in finance that require the correct specification of the
conditional distribution of returns. For example, the usual statistical technique in risk
management is value-at-risk (VaR)which is used to quantify the level of risk. An appropri-
ate specification of the conditional distribution of returns is important in VaR estimation
which critically depends on accurate return and volatility forecasts. The distributions we
considered in this study account for the skewness and tail characteristics of asset returns.

3 The structural breaks might occur in return series due to economic and geopolitical
news (e.g., financial crisis in 2008–2009, political turmoil in Lybia in 2012, and crisis in
Syria and tropical storm in 2012) especially in the era of rapid and advanced news trans-
mission via current electronic social and commercial media (Belkhouja and Boutahary,
2011; Ewing and Malik, 2017; Ma et al., 2017).

4 We are grateful to anonymous referees for bringing the importance of long-memory
models to our attention.
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