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A B S T R A C T

Airlines air traffic delays cause discomfort to passengers and cost airlines dearly, thus there is no wonder that a
growing number of authors from different disciplines have studied air traffic delays and their patterns. This
paper departs from existing literature by assuming air traffic delay to be a duration variable whose true dis-
tribution is unknown. It suggests a general model that includes several other models as subfamilies and utilizes
an information contents based approach to find the most appropriate model to study air traffic delays. The
results for two different airlines, American Airlines and United Airlines, reveal that airlines of comparable size
and market influence air traffic delays could follow different patterns.

1. Introduction

This essay attempts to address the problem of searching for a sui-
table mathematical distribution function for flight delays. It suggests
using an information content based search criteria to choose the best fit
for air traffic delay based on the information contents of data. More
specifically, I consider the generalized gamma (GG) distribution for
modeling air traffic delays. The GG family includes many duration
distributions such as exponential, gamma and Weibull as subfamilies.
This essay illustrates the applications of information functions devel-
oped for GG family in Dadpay et al. (2007), using data on a sample of
flight delays data.

Air traffic delays are both a major source of passengers' complaints
and a topic of discussion for authors of different disciplines studying the
aviation industry. Thus, it is no surprise that recent years have wit-
nessed an increase in the number of experts investigating this issue.
Mayer and Sinai (2003), Mazzeo (2003) and Rupp et al. (2003) likewise
study the relationship between service quality and competition in air-
line markets, considering air traffic delays as a signal of service quality.
While Mayer and Sinai find that delays are longer in more competitive
markets, Mazzeo and Rupp et al. conclude the opposite. Kostiuk, et al.
(2000) study impacts of air traffic delays on the costs to air traffic
control systems, airlines and airports. They conclude that an increase in
the air traffic delays reduces aircraft productivity, which can prevent
airlines from reaching their financial goals. Suzuki (2000) shows that
market shares are positively correlated with on-time airline perfor-
mance, and thus an airline with too many air traffic delays is less likely
to retain its market share. Forbes (2008) points out that air traffic

delays affect the demand for air travel as well as its costs.
The discrepancy between scheduled departure time and actual de-

parture time and delays in the air and arrival delays have been of in-
terest to many who attempt to develop models to predict air traffic
delays and air traffic congestion (Odoni et al., 1994; Shumsky, 1997;
Idris et al., 2002; Tu et al., 2005). Glockner (1996) explains that air
traffic delays happen when demand for airports or airspace surpasses
available capacity. He considers utilizing a tactical-optimization model
to decrease the negative impact of air traffic delay. However, he con-
cludes that such a model would be extremely complex because of un-
certainty in airport-capacity forecasts and airlines' performance. He
recommends using congestion management system to reduce the length
of delays. The present study demonstrates how using an information
based search criteria will reduce such uncertainties by using the best fit
to forecast air traffic delays.

Information theoretic measures are used by researchers in various
disciplines. Theil (1967) and Zellner (1971) pioneered applications of
information theoretic approaches for econometric analysis. Since these
ground-breaking works, development of information theoretic methods
in econometrics and their applications in various economic fields have
become widespread. Recent years have witnessed an increase in uti-
lizing these methods in empirical studies investigating cases and sce-
narios in the business world. Aktekin and Soyer (2014) use a general-
ized gamma to study abandonment behavior and timing in call centers,
Yalcinkaya et al. (2017) utilize this approach to investigate the optimal
timing for product modification in automobile industry. The present
article extends the application of information based models to aviation
and airport management.
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The following section reviews the methodology used in this study.
The third section presents the empirical results when the methodology
is applied to air traffic delays data and is followed by concluding re-
marks.

2. Methodology

I consider traffic delay data y1,…,yn as being independent ob-
servations from a random variable Y that has a generalized gamma
distribution GG(α,β,λ) with probability density function:
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where Γ(.) is the Gamma function where α and β are shape parameters
and λ is the scale parameter.

The GG family, introduced by Stacy (1962), contains several well-
known models as subfamilies (Johnson et al., 1994). The subfamilies of
GG include exponential (α = 1 and β = 1), Weibull (α = 1) and
Gamma (β = 1). Another subfamily of GG is the generalized normal
distribution (2α and β = 2), which includes Half-Normal.

(α = 1/2) and Rayleigh (α = 1).

I will apply two of the information methods developed in Dadpay
et al. (2007) to the air traffic delay data. The following moments of GG
distribution will be used for information analysis:
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logΓ(α) is the digamma function.
Shannon entropy of GG(α, β, λ) is:
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The entropy of gamma distribution G(α,λ) is given by (5) with β =
1. The entropy of Weibull distribution W(β,λ) is given by (5) when α =
1. The entropy of exponential distribution E(λ) is given by (5) with α =
β = 1. The entropy will be used for examining the distributional fit.

Kullback-Leibler discrimination information function between two
models in GG family, GG(α,β,λ) and GG0(α0,β0,λ0), is:
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where =ϕ β β/β 0 is the ratio of shape parameters and =ϕ λ λ( / )λ
β

0 0is the
ratio of scale parameters, and μ α φ φ( , , )β λ and ν α φ φ( , , )β λ are the mean
and geometric mean of GG( α φ φ, ,β λ):
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It is well known that K(GG:GG0)≥ 0; equality holds if and only if f (y|
α,β,λ)= f (y|α0,β0,λ0) for all y≥ 0.

The discrimination information between GG(α,β,λ) and G (α0,λ0) is
given by (6) with =ϕ ββ . The discrimination information between
GG(α,β,λ) and Weibull W(β0,λ0) is given by (6) with α0 = 1. The dis-
crimination information between GG(α,β,λ) and exponential E(λ0) is
given by (6) when =ϕ ββ and α0 = 1.

Since H(GG) and K(GG: GG0) are functions of the GG parameters,
they can be estimated by using the parameter estimates in (5) and (6). I
will use two estimation approaches.

2.1. Maximum likelihood estimation (MLE)

The likelihood function based on a set of air traffic delay observa-
tions y = (y1,…, yn) from y∼ f(y|α, β, λ)=GG (α, β, λ) is:

⎜ ⎟= ⎛
⎝

⎞
⎠

⎧
⎨⎩

⎡
⎣
⎢ − − ⎤

⎦
⎥

⎫
⎬⎭

f y α β λ
β

λ α
n αβ y y

λ
( | , , )

Γ( )
exp ( 1)logαβ

n β

β
(9)

where = ∑ =( )y yβ
n i

n
i
β1

1 and. = ∑ =( )y ylog logn i
n

i
1

1
The likelihood equations for the derivatives of log-likelihood func-

tion are given by the moment equations (3) and (4) with =θ yβ
1 and

=θ ylog2 . The MLE estimates of GG parameters are solutions of these
equations α βˆ, ˆandλ̂.

Using α βˆ, ˆand λ̂ in (5) and (6) gives estimates of the GG entropy
H GGˆ ( )and discrimination information function K GG GGˆ ( : )0 .
Relationships between H GGˆ ( ) and the log-likelihood function, the
likelihood ratio statistics and information criteria AIC and BIC are
shown in Dadpay et al. (2007). The log-likelihood ratio statistic for the
two nested models in the GG family is given by

= −( )LR n H H2 ˆ ˆGG GG0 (10)

where HĜG0 is the ML entropy estimate of the subfamily of GG; gamma
when α0= 1, Weibull β0 = 1 and exponential when α0= β0 = 1. The
distribution of LR statistic is asymptotically χd

2 with d degrees of
freedom, where d is the difference between the number of parameters of
GG and GG0 (d= 1 for testing gamma and Weibull against GG and
d= 2 for testing exponential against GG).

The Akaike information criteria AIC and Schwartz information cri-
teria BIC for the GG family are given by:

= +AIC nH k2 ˆ 2GG (11)

= +BIC nH k n2 ˆ logGG (12)

where k is the number of model parameters (k= 1 for exponential,
k= 2 for Weibull and gamma and k= 3 for GG).

Using the MLE estimates of GG and GG0 parameters in (6) provides
information criteria for discriminating between the GG model and its
subfamilies.

2.2. Bayesian estimation

Bayesian inference for the GG, H(GG) and K(GG:GG0) are obtained
using the prior distribution for the GG parameters used by Dadpay et al.
(2007). Given a prior distribution π(α, β, λ), the Bayes Theorem gives
posterior distribution:
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Assuming that α, β and τ parameters are independent, a priori, the
following conditional posterior distributions could be obtained:
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