A Deterministic Approach for Active Distribution Networks Planning with High Penetration of Wind and Solar Power

Geev Mokryani, Yim Fun Hu, Panagiotis Papadopoulos, Taher Niknam, Jamshid Aghaei

PII: S0960-1481(17)30578-5
DOI: 10.1016/j.renene.2017.06.074
Reference: RENE 8941
To appear in: Renewable Energy

Received Date: 19 February 2017
Revised Date: 19 June 2017
Accepted Date: 20 June 2017

Please cite this article as: Geev Mokryani, Yim Fun Hu, Panagiotis Papadopoulos, Taher Niknam, Jamshid Aghaei, A Deterministic Approach for Active Distribution Networks Planning with High Penetration of Wind and Solar Power, Renewable Energy (2017), doi: 10.1016/j.renene.2017.06.074

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A Deterministic Approach for Active Distribution Networks Planning with High Penetration of Wind and Solar Power

Geev Mokryani1, Yim Fun Hu1, Panagiotis Papadopoulos2, Taher Niknam3, Jamshid Aghaei3
1. School of Electrical Engineering and Computer Science, University of Bradford, UK
2. UK Power Networks, London SE1 6NP, UK
3. Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71555-313, Iran
Emails: g.mokryani@bradford.ac.uk, y.f.hu@bradford.ac.uk, panagiotis.papadopoulos@ukpowernetworks.co.uk, niknam@sutech.ac.ir, aghaei@sutech.ac.ir

Abstract – In this paper, a novel deterministic approach for the planning of active distribution networks within a distribution market environment considering multi-configuration of wind turbines (WTs) and photovoltaic (PV) cells is proposed. Multi-configuration multi-period market-based optimal power flow is utilized for maximizing social welfare taking into account uncertainties associated with wind speed, solar irradiance and load demand as well as different operational status of WTs and PVs. Multi-period scenarios method is exploited to model the aforementioned uncertainties. The proposed approach assesses the effect of multiple-configuration of PVs and WTs on the amount of wind and solar power that can be produced, the distribution locational marginal prices all over the network and on the social welfare. The application of the proposed approach is examined on a 30-bus radial distribution network.

Index Terms — Wind power, active network management, social welfare, market-based optimal power flow, distribution network operators, distribution locational marginal prices.

Nomenclature

A. Sets and Indices
\(i,j\) \quad \text{Index of system buses running from 1 to } NB
\(w\) \quad \text{Index of wind turbine}
\(G\) \quad \text{Index of substation}
\(D\) \quad \text{Index of loads}
\(t\) \quad \text{Index of energy block offered by wind turbines running from 1 to } NT
\(q\) \quad \text{Index of energy bids submitted by loads running from 1 to } NQ
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات