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H I G H L I G H T S

• Two-stage model links discrete-optimization to real-time system dynamics operation.

• The solutions obtained are non-dominated Pareto optimal solutions.

• Computationally efficient GA solver through customized chromosome coding.

• Modest to considerable savings are achieved depending on the consumer’s preference.
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A B S T R A C T

In the wake of today’s highly dynamic and competitive energy markets, optimal dispatching of energy sources
requires effective demand responsiveness. Suppliers have adopted a dynamic pricing strategy in efforts to control
the downstream demand. This method however requires consumer awareness, flexibility, and timely respon-
siveness. While residential activities are more flexible and schedulable, larger commercial consumers remain an
obstacle due to the impacts on industrial performance. This paper combines methods from quadratic, stochastic,
and evolutionary programming with multi-objective optimization and continuous simulation, to propose a two-
stage discrete-continuous multi-objective load optimization (DiCoMoLoOp) autonomous approach for industrial
consumer demand response (DR). Stage 1 defines discrete-event load shifting targets. Accordingly, controllable
loads are continuously optimized in stage 2 while considering the consumer’s utility. Utility functions, which
measure the loads’ time value to the consumer, are derived and weights are assigned through an analytical
hierarchy process (AHP). The method is demonstrated for an industrial building model using real data. The
proposed method integrates with building energy management system and solves in real-time with autonomous
and instantaneous load shifting in the hour-ahead energy price (HAP) market. The simulation shows the occa-
sional existence of multiple load management options on the Pareto frontier. Finally, the computed savings,
based on the simulation analysis with real consumption, climate, and price data, ranged from modest to con-
siderable amounts depending on the consumer’s solution preference.

1. Introduction

The future electricity grid is characterized by high volatility in both
the supply and demand sides. This is attributed to the shift towards the
microgrid systems with distributed energy sources, the large-scale pe-
netration of electrical vehicles (EVs) to the transportation sector, the
increased reliance on intermittent renewable energy sources, the dis-
couragement of fossil-fuel run generators due to their harmful effect on
the environment, and the increased competition due to the expanding
deregulation of electricity markets [1]. In response, market players
must invest in preeminent demand management systems in order to

optimize the supply and demand matching process [2–5].

1.1. Energy pricing for demand response

One direct approach adopted by suppliers in the deregulated market
is the use of Real Time Pricing (RTP) [6]. RTP considers charging the
consumer with the variable price of electricity reflecting the con-
temporaneous marginal supply costs. Therefore, consumers are charged
higher rates during peak demand periods and lower rates during off-
peak demand periods. This method is an example of demand response
(DR) because it incentivizes consumers to become significant market
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players by adjusting their demand in response to the price signals. In
RTP, energy rates are typically cleared one day prior to their execution
as in the day-ahead pricing (DAP), where both the generators and retail
suppliers submit their hourly price and demand bids in the wholesale
market before the operating day. The winning bids constitute a supply
and purchase commitment. However, during the course of the oper-
ating day, the committed supply often falls short of the actual demand
in real time. This forces suppliers to refer to the highly volatile real-time
energy market in order to balance the difference in demand. The tariff
communicated to the consumer should cover the administrative costs of
scheduling, bidding, and flow of power among other costs, but the costs
of real-time volatility are burdened mostly by the supplier, specifically
as the competition level increases. Alternative to the DAP, rates can be
cleared an hour ahead of their execution as in the hour-ahead pricing
(HAP) system which is offered by fewer suppliers [6–8]. HAP is less
common due to the difficulty in consumer adaptation and load sche-
duling with short notice, although it is advantageous to the supplier
who can mitigate the costs of long term forecast errors and inefficient
bidding in the wholesale energy market. Current technologies are hin-
dering the prevalence of the HAP system. Such system requires in-
telligent, instantaneous, and autonomous DR controllers as the one
suggested by this research.

1.2. Residential DR

RTP potentials for the residential consumer have been addressed in
research from work discussing thermostatic loads control [9–14], to
scheduling household appliance operations [15–24], to managing
photovoltaic (PV) panels, and energy storage units including thermal
and battery storage or electrical vehicles (EVs) [15,16,18,20,23].

The most promising opportunities for effective DR are in the control
of thermostatic loads like in the heat, ventilation, and air-conditioning
(HVAC) systems [25]. A price-responsive intelligent thermostat was
presented in [9]. The author’s approach to DR is through modifying the
operation speed of a residential HVAC compressor so that loads are
ramped up or down in response to price signals. In [11,13] the authors
assigned thermostat operational set-points in response to varying price
signals. The authors in [10] had a similar approach with the inclusion
of model predictive control (MPC) in controlling the environment
conditions for consumers. Similarly, a momentary control algorithm
was presented in [12] which determines set-points for heating and
thermal storage tanks according to energy prices in real time. The study

in [14] evaluated HVAC control strategies and noted that profits from
set-point-based control methods are highly dependent on the climate
conditions associated with the geographical location. However, their
study was limited to the time-of-use (TOU) tariff which is not as eco-
nomically successful for driving DR as DAP or HAP [26–28].

For non-thermostatic load controls, DR can be achieved by sche-
duling the operation of residential appliances, control EV charging, and
managing storage systems. In [16,21], the authors presented a sche-
duling algorithm for residential appliance and EV while considering the
waiting time as a factor in the objective function. Their method relies
on price prediction and utilizes simple linear programming techniques.
A similar work is presented in [15] with the addition of PV panels and
energy storage units as part of the decision variables. Their objective
function however is a mixed-integer nonlinear programming (MINLP)
type but they used linear approximation methods for find the solution
using simple linear programming methods. In [17], the authors con-
sidered inclining block rates (IBR) on top of the RTP predictions in the
appliance scheduling problem. Rather than solving the scheduling
problem ahead of time, the authors in [18] presented an event-triggered
controller which is suitable for both DAP and HAP. The controller al-
gorithm is based on mixed integer linear programming (MILP) methods.
Similarly, the authors in [22] assumed duration-based DR event triggers
irrespective of the energy pricing system used. For the less dynamic
pricing systems, the residential appliance scheduling under DAP system
was discussed in [19]. In [20], the authors compared DAP with TOU
and the flat rate system. They included EV charging and storage systems
in the MINLP scheduling problem. Appliances and battery storage
scheduling using MINLP in TOU only is addressed in [23]. Uniquely, the
authors in [24] suggested a linear appliance scheduling and a novel
pricing approach where energy rates are cleared after consumption had
occurred. The argument for their approach is in favor of avoiding un-
desired scenarios in the aggregate system resulting from unbalanced
responses among consumers. As a result, suppliers can charge the full
realized cost of bulk energy to the consumers.

1.3. Industrial DR

While the residential sector receives higher attention in DR research
due to consumer flexibility and load schedulability, the sizeable impact
of larger commercial or industrial consumers on the electricity grid
makes them a better candidate for DR. The DR product of one industrial
consumer outweighs the aggregated DR from hundreds or thousands of

Nomenclature

t index for discrete time steps
m index for HVAC loading stage
i index for EV
H simulation time horizon
M controllable loads registered in the system for a given

period
C registered loads lumped capacity
S HVAC system loading stages
N number of commercial EVs
PEV EV charging/discharging power
Ts preferred thermostat setpoint
T indoor temperature

+TOL , −TOL upper and lower tolerated deviations from Ts

τ increment change in comfort for each additional loading
stage m

λFR consumer's threshold price
λt

DR energy price for time t
ai, bi EV i arrival and departure times
SOCi t, state of charge of EV i at time t

Qi battery capacity of EV i
x minimum allowed SOCi t,
Dt predicted base load for time t
D́ actual building base load
pDt probability of Dt

−P
p
t t1:

Dt state-transition probability from −Dt 1 to Dt

α, β, γ quadratic function parameters
U t T{ , }m time-utility functions for HVAC load m
U t SOC{ , }i i t, , U t SOC λ{ , , }i

V B
i t t

DR2
, time-utility functions for EV i char-

ging and discharging
t t{ }fi amount of time required by EV i to fully charge
f X( )1 , f X( )2 individual objective functions of the multi-objective

problem
V set of M controllable loads

= …L l l{ , , }M1 set of M load capacities
= …W w w{ , , }M1 set of weights assigned to M loads
= …X x x{ , , }M1 set of M binary decision variables for switching loads

on or off
e load shifting target
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