INTEGRATION the VLSI journal 58 (2017) 91-100

journal homepage: www.elsevier.com/locate/vlsi

Contents lists available at ScienceDirect

INTEGRATION, the VLSI journal

E
INTEGHATION

On supporting rapid prototyping of embedded systems with reconfigurable

architectures

@ CrossMark

I. Koutras®, K. Maragos, D. Diamantopoulos, K. Siozios, D. Soudris

School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece

ARTICLE INFO ABSTRACT

Keywords:

Reconfigurable architectures
Rapid prototyping

Genetic algorithm

Reducing time-to-market while improving product quality is a big challenge. This paper proposes a software-
supported framework for rapid prototyping that offers a concurrent fast hardware/software system-level design.
The introduced framework enables the constant evaluation and verification of the prototype under development,
while it provides automatic functionality mapping to hardware via High-Level Synthesis techniques. We

evaluate our framework and its software instantiation with a computer vision algorithm. Based on our
experimentation, we show that our approach reduces the development time by almost 64x, it prunes the
hardware design space by 34x, while maintaining designs that trade-off high Quality-of-Report on the Pareto

frontier.

1. Introduction

Designing full system solutions is a complex task. With vastly
increased complexity and functionality especially in the nanometer era,
where hundreds of millions of transistors are integrated on a single
chip, the design of complex Integrated Circuits (ICs) has become a
challenging task. In addition to that, the continuously increased
demand for even higher performance, i.e. in terms of operation
frequency and power consumption, imposes that new design techni-
ques are absolutely required.

This problem becomes far more important if we take into con-
sideration that software aspects of ICs can account for 80%, or more, of
embedded systems development cost, making the conventional way for
product development insufficient. For instance, the International
Technology Roadmap for Semiconductors (ITRS) [1] predicts that
software development costs will increase and will reach rough parity
with hardware costs, even with the advent of multi-core software
development tools.

Electronic Design Automation (EDA) tools are crucial nowadays for
deriving optimal solutions. Existing working flows are built on the
fundamental premise that models are fully interchangeable and inter-
operable among different EDA vendors for the whole physical proto-
typing process, as in architectural analysis, simulation and synthesis.
Even though this concept seems straightforward and promising, it has
been proven completely elusive in the world of Electronic System Level:
existing solutions do not provide either model interoperability, neither
independence between model and software tools. As such, it is often

* Corresponding author.
E-mail address: joko@microlab.ntua.gr (I. Koutras).

http://dx.doi.org/10.1016/j.v1si.2017.02.007

desired to reach the highest possible systemic level of the target
application description in order to avoid a possible vendor lock-in.

Apart from the technology-oriented parameters that affect the
efficiency and/or the flexibility of a digital system, the tight time-to-
market requirements make conventional ways for product develop-
ment, e.g. start software development after finalising hardware, to lead
usually in missed market windows and revenue opportunities. Hence,
there is an absolute requirement for software developers to get an early
start on their work, long before the Register-Transfer Level of the
hardware is finalised.

Towards this direction, and as research pushes for better program-
ming models for multi-processor and multi-core embedded systems,
Virtual Platforms (VPs) solve one of today's biggest challenges in
physical design: to enable sufficient software development, debug and
validation before the hardware device becomes available. More speci-
fically, with the virtualization feature, it is possible to model a hardware
platform consisted of different processing cores, memories, periph-
erals, as well as interconnection schemes, in the form of a simulator.
Furthermore, as the task of hardware development progressively
proceeds, it is feasible to redistribute to software teams updated
versions of the VP, that enable a gradually better description of the
target architecture.

The concept of virtualization is also important for hardware
architects, as it enables easier verification of Intellectual Properties
(IP) kernels. This feature could be employed both in the case where
only a few of the application kernels have to be developed in hardware,
as well as if incremental system prototyping is performed. In both

Received 30 April 2015; Received in revised form 16 February 2017; Accepted 16 February 2017

Available online 16 March 2017
0167-9260/ © 2017 Elsevier B.V. All rights reserved.

http://www.sciencedirect.com/science/journal/01679260
http://www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2017.02.007
http://dx.doi.org/10.1016/j.vlsi.2017.02.007
http://dx.doi.org/10.1016/j.vlsi.2017.02.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2017.02.007&domain=pdf

I. Koutras et al.

cases, the virtualization feature provides all the necessary mechanisms
for performing co-simulation and verification between the IPs devel-
oped in Register Transfer Level (RTL) and the rest application
functionalities executed onto the VP.

In this paper we identify common pitfalls during virtual prototyping
for hardware/software co-design and propose a software-supported
methodology to perform rapid system-level prototyping of complex
digital systems. More specifically we:

® Present a modern virtual prototyping platform in Section 2 and
explain some of the most time-consuming steps in development.

® Define and extract necessary task information through profiling,
high-level synthesis and task execution on an FPGA (Section 3.1).

® Model task mapping as an optimisation problem and solve it with
genetic algorithms (Subsection section 3.2).

e Optimise the hardware-assigned tasks assigned to hardware by
performing further DSE with the help of FPGA (Subsection section
3.3).

e Evaluate our proposed working flow on the Harris & Stephens
Corner Detection Algorithm from Computer Vision (Section 4).
From a full-software solution we reach to an optimal mixed (hard-
ware/software) one 6 times faster than a conventional approach to
virtual prototyping (Section 5).

® Mention other relevant techniques that can be used for task
partitioning, as well as other prototyping frameworks, and explain
where and why our proposed toolflow works better (Section 6).

Our conclusion is that rapid prototyping of multi-million gate
systems is achievable. We can have prototypes of our system on-the-
go, as we modify, add, or optimise the algorithms that describe the
system tasks.

2. Background: virtual prototyping

Fig. 1 depicts three consecutive design stages while using a virtual
prototyping platform: (i) system modeling, (ii) rapid virtual prototyp-

Goal No. 1

INTEGRATION the VLSI journal 58 (2017) 91-100

ing and (iii) system integration. Different virtualization environments
can be employed for this purpose. Without affecting the generality of
VPs, we refer here to the OVP [2], since it is a publicly available and
easily extensible approach. Additionally, the increased simulation
speed provided by OVPSim ensures that complex systems can be
modeled in reasonable amount of time (hundreds of millions of
simulated instructions per second). As the OVP models are pre-built,
they support fully functional simulation of a complete embedded
system. Also, since these models are binary-compatible with the
simulated hardware, the developed software can be executed onto the
final system without any modifications. This enables faster iteration for
the software development teams.

Similarly, hardware developers are also benefited from the adoption
of hybrid VP. Since this platform is composed of a simulator and TLM/
SystemC models, it exhibits increased flexibility which in turn alleviates
many constraints that designers face during the architecture design.
More specifically, the former models (related to OVP) describe the
software part of the target system (e.g., executed onto an embedded
processor), while the TLM/SystemC models provide the design func-
tionality that has been mapped to custom hardware IPs (e.g., FPGA)
after system mapping.

Connecting the hardware IPs with the functionality mapped to
software is imperative in hardware/software co-design. Platform con-
nectivity between the off-chip world and the functions in software is
necessary once functions are implemented in hardware. Accordingly, a
communication layer between the hardware-dependent software and
the custom hardware IPs is necessary, as well as to provide all the
necessary synchronisation for the computation tasks mapped in hard-
ware and software. In the VP approach we refer to, this is implemented
as a software stack running on a native host (x86-compatible) and
more specifically to Fig. 1 as the “HotTalk API”.

HotTalk API [3] provides a wide class of middleware stack,
including device drivers for the host PC, libraries in OVP and
transactors in FPGA, so that designers can efficiently test the entire
system from early design iterations down to the final system validation
with real-world test benches, with the minimum possible effort. The

Goal No. 2

All-Software solution
(e.g. ROS, UML, OpenCV...)

Profiling
(e.g. Valgrind, Vtune)

C

~
/

HWI/SW Partitioning

Hardware-dependent software
(e.g. Software running on ARM)

C

) (

Control-flow software
(e.g. Software running on x86 host)

)

Custom HW IPs
(e.g. Application running on FPGA)

C

SystemGTLM
[Conexa R

Opon Virtual Plattorms

Virtual
Prototyping

Conventional
Prototyping

|\/

_TLM/SystemC
terconnection Bi

System Modeling
HotTalk API (e.g. SystemC)
(Device driver, SW stack)

Virtual Library

Goal No. 3
Synthesis

"Technology
___Librar

Execution flow

I Feedback loop

[| Emphasis in this paper

Fig. 1. A hybrid platform for virtual prototyping.

92

ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/

https://isiarticles.com/article/102767

