A multi-objective framework for cost-unavailability optimisation of residential distributed energy system design

Carmen Wouters a, Eric S. Fraga b,*, Adrian M. James a

a School of Energy and Resources, University College London (UCL), SA 5000 Adelaide, Australia
b Centre for Process Systems Engineering, Department of Chemical Engineering, University College London (UCL), London WC1E 6BT, UK

ABSTRACT

Future energy systems are expected to include distributed energy systems (DES) and microgrids (MG) at the distribution level. These energy efficient environments enable participating consumers to locally generate and share both electrical and thermal energy. Apart from the potential for a more cost-efficient energy system design, improved system availability is also increasingly put forward as a major advantage of MGs. This paper proposes a mixed-integer linear programming (MILP) approach for the design of a neighbourhood-based energy system, considering the trade-off between total annualised cost and electrical system unavailability. System design is optimised to meet the yearly neighbourhood energy demands by selecting technologies and interactions from a pool of dispatchable and renewable poly-generation and storage alternatives. The availability implementation employs a Markov chain approach combined with logic-gate integer programming. The Pareto trade-off sets of on- and off-grid MG modes are obtained using a weighted-sum approach. The developed model is subsequently applied to an Australian case-study. The sought after trade-off “knee” points for each Pareto curve are hereby identified. Additionally, through comparing on- and off-grid design trade-offs, the need for component redundancy for systems with islanding capabilities is analysed.

© 2017 Published by Elsevier Ltd.

1. Introduction

1.1. Background

Residential distributed energy systems (DES) are gaining increasing interest as a solution for challenges affecting traditional top-down energy systems [1–3]. Conventionally, electricity is generated in large centralised power plants to be transmitted and distributed to consumers in the grid [2,3]. This conventional system faces challenges with regard to growing global energy needs, emissions and the need for alternative energy resources [4]. DES have the potential to increase system efficiency and reduce emissions through strategic energy-integrated design. Residential DES refer to a residential area that has the option to install distributed generation units (DG), storage units and local energy sharing of heating, cooling and electricity [5,6]. DG units refer to small-scale units located close to end-consumers at the distribution level in the grid [5,6]. A small system where energy can be locally generated through DG units and shared among participants organised through a central control unit is defined as a microgrid (MG) – if predominantly electricity based –, or, a DES more generally. MGs introduce various potential benefits to end-consumers of which increased electrical system dependability is often highlighted [1,7,8].

In order for MGs to emerge on a wide-spread scale, a cost effective, efficient and dependable energy system design is required. This paper presents a generic optimisation-based decision-making approach to assess the relative benefit in terms of cost and electrical system availability of a small residential energy system. This trade-off is especially interesting in MG systems since local energy generation and integration can offer increased electrical availability within low voltage distribution systems that are responsible for over 90% of end-consumer interruptions [9].

1.2. Availability as an attribute of dependability

Distributed energy resource planning problems are inherently multi-objective (MO) since they involve many stakeholder interests, often conflicting, that need to be considered and traded off [10]. Apart from system cost, system dependability is of major
importance in DES. A dependable system allows trusting the services it is supposed to deliver [11]. An analysis of the dependability of a system entails the research of a wide range of aspects [11–19]. The two most employed attributes to measure system dependability are availability and reliability, which serve different purposes highlighted by their definitions [11–19]:

Availability is the probability that a system is employable at a certain time t, i.e. the readiness for correct service. Availability measures the dependability of repairable systems. Unavailability is its complement.

Reliability is the probability that a system works correctly over a certain time interval Δt, provided it worked correctly at the start of this interval. Reliability is mostly employed for irreparable or continuously operating systems. The complement of reliability is unreliability.

Availability is chosen as measure since residential DES are: (i) non-critical in operation in contrast with, e.g. continuous critical processes [20], (ii) readily maintainable and repairable within reasonable time frames [21], and (iii) expected to work at a certain time t, i.e. consumers expect the light to go on when flicking a switch. Availability refers here to the probability of a unit to provide (full) power to the load at any time t [21].

1.3. Determining availability

Electrical system availability is typically expressed through so-called “nines” [22]. Central grid availability, for example, can range
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات