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Abstract 

Mathematical modelling procedure is an integral part of complex system development process. Intellectual self-
organizing automatic control systems are intended for functioning in conditions of changing the environment, 
controlled plant parameters, along with control purposes. Information incompleteness causes declarative statement 
of control task, i.e. without action sequence for its solution. As consequence, the major component of intellectual 
self-organizing automatic control systems is the action planning subsystem. Declarative tasks are solved by using 
artificial intelligence methods. However, existing methods of action planning represent the procedures demanding 
greater use of computing resources. Therefore efficiency of intellectual self-organizing automatic control systems in 
many respects is defined by productivity of action planning subsystem. Artificial neural planning networks are 
applied to increase efficiency as the mechanism of action planning in intellectual self-organizing automatic control 
systems. Mathematical modelling of intellectual self-organizing automatic control systems requires software 
realization of artificial neural planning networks. In this article we review the results of our study on the properties 
of artificial neural planning networks. 
© 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the scientific committee of the 3rd International Conference “Information Technology and 
Nanotechnology. 

Keywords: Intellectual self-organizing systems; artificial neural planning networks 

 

 
* Corresponding author. Tel.: +7-908-378-59-27; 

E-mail address: mfstepanov@mail.ru 

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia Engineering 00 (2017) 000–000  

  www.elsevier.com/locate/procedia 

 

1877-7058 © 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the scientific committee of the 3rd International Conference “Information Technology and Nanotechnology.  

3rd International Conference “Information Technology and Nanotechnology”, ITNT-2017, 25-27 
April 2017, Samara, Russia 

Mathematical modelling of intellectual self-organizing automatic 
control system: action planning research 

M.F. Stepanova*, A.M. Stepanovb  
aYuri Gagarin State Technical University of Saratov, Politechnicheskaya st., 77, Saratov, 410054, Russia 

bInstitute of Precision Mechanics and Control, Russian Academy of Sciences, Rabochaya st., 24, Saratov, Russia  

Abstract 

Mathematical modelling procedure is an integral part of complex system development process. Intellectual self-
organizing automatic control systems are intended for functioning in conditions of changing the environment, 
controlled plant parameters, along with control purposes. Information incompleteness causes declarative statement 
of control task, i.e. without action sequence for its solution. As consequence, the major component of intellectual 
self-organizing automatic control systems is the action planning subsystem. Declarative tasks are solved by using 
artificial intelligence methods. However, existing methods of action planning represent the procedures demanding 
greater use of computing resources. Therefore efficiency of intellectual self-organizing automatic control systems in 
many respects is defined by productivity of action planning subsystem. Artificial neural planning networks are 
applied to increase efficiency as the mechanism of action planning in intellectual self-organizing automatic control 
systems. Mathematical modelling of intellectual self-organizing automatic control systems requires software 
realization of artificial neural planning networks. In this article we review the results of our study on the properties 
of artificial neural planning networks. 
© 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the scientific committee of the 3rd International Conference “Information Technology and 
Nanotechnology. 

Keywords: Intellectual self-organizing systems; artificial neural planning networks 

 

 
* Corresponding author. Tel.: +7-908-378-59-27; 

E-mail address: mfstepanov@mail.ru 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.09.657&domain=pdf


618	 M.F. Stepanov  et al. / Procedia Engineering 201 (2017) 617–622
2 M.F. Stepanov, A.M. Stepanov / Procedia Engineering 00 (2017) 000–000 

1. Introduction 

Computer aided design often uses declaratively defined tasks. For solving these tasks, artificial intelligence 
methods are conventionally used. However, existing methods of action planning represent the procedures demanding 
greater use of computing resources. It is known, that multilevel systems of representation and processing of 
knowledge are the most effective [2]. They allow reducing expenses of time and resources by decomposition of 
search space. On the other hand, parallel processing allows reducing time of solving tasks. These include 
neurocomputer systems [3]. 

Computer aided control system design GAMMA-3 [4] possesses opportunities of solving tasks both in procedural 
and non-procedural (declarative) statement. Artificial neural planning networks (ANPN) are applied to increase 
efficiency as the mechanism of action planning in intellectual self-organizing automatic control systems. In this 
article we review the results of our study on the properties of artificial neural planning networks. The most important 
property of those is convergence of solutions. Also, when knowledge of control problem area is presented as 
axiomatic theories of formalized task automatic solutions of the automatic control [6], resolvability examining is 
necessary. Axiomatic theories of automatic decisions of the formalized control tasks are used as the form of 
knowledge representation of automatic control [6]. As consequence, resolvability examining of decisions theory is 
necessary. 

2. Material and methods 

2.1. Investigating decision convergence of artificial neural planning network 

In the structure of artificial neural planning networks (ANPN), the artificial neural archival network (ANAN) is 
used as the memory device for storage of the decisions obtained in the artificial neural deciding network (ANDN). 
Hence, it does not render influence on convergence of decision process stability of a task in artificial neural planning 
network as a whole. Therefore, the main attention will be paid to the investigation of properties of artificial neural 
deciding network (ANDN).  

Let us denote the following variables: iiiiS p;o;d;)z( z  is a state of ANDN on i-th decision step of a z-task; 
zzzzz c,t,r,d  is a statement of z-task; zd  is a source data of z-task; zr  is a desirable result of z-task; zt  is a z-

task requirements to solution; zc  is a z-task applicability conditions;  CTR d,d,ddk  is a state of ANDN data-
layer neurons (further referred to as “data-neurons”), which include desirable results, requirements to the results, and 
conditions of applicability), at the k-step; ko  is a state of ANDN operations-layer neurons (operations-neurons) at 
the k-step; kp  is current plan of the task decision plan, constructed after the k-step; 

)o(T)o(R)o(D)o(C:o   is the format of own decision theory axiom record; o  is name of the action 
(operation) described by an axiom; )o(C  is function for returning applicability conditions of an axiom o ; )o(D  is 
function for returning source data of an axiom o ; )o(R  is a function returning required results of an axiom o ; 

)o(T  is a function returning requirements to results of an axiom o ; Acard  is a set A  quantity of elements 
(cardinal number);  is an empty set; СТRzzzzdz d,d,dc,t,r,d:)z(w , ( zzR rdd  , zТ td  , zС cd  ) is the 
operator, establishing data-neuron states according to z-task attributes; dо:dоw ,                                                          
( )o(C)o(T)o(D)o(R Rд , )(dТ oT , )(dС oT ) is the operator, establishing data-neurons state 
according an operations-neurons states; dо:dоw , )()()()((dR oCoToDoR  , )(dТ oT , ))(dС oT  is 
the operator establish data-neurons state according an operations-neurons states; od:odw ,                                             
( }d)(,d)(,d)(|{o CTR  iiii oCoToRo ) is the operator establish operations-neurons state according an data-
neurons states;  [0][0];[0];;)z(| z

0
z  ssS  is initial state set of ANDN to z-task, where symbols " [0]" designate 

zero vectors accordingly dimension; }p;o;d;)z(|{ zzzz
z
z  ssS  is the final ANDN-states achieved upon 

termination of the z-task decision. 
Among final ANDN-states we shall allocate set of target states z

zzz
T
z }p;[0][0];;)z(|{ SssS   , which 

achievement testifies to successful construction of the plan zп  of a z-task decision. Achievement of final states of 
the kind [0]o,[0]d,p;o;d;)z( zz

T
zzzzz  Ss  , not being target, testifies to absence of the z-task decision. 

Convergence of process of search of the decision, with respect to a planning artificial neural network, as a matter of 
fact, means resolvability. 
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Convergence of decision search, with reference to the ANDN, as a matter of fact, means resolvability. I.e., for 
each task z, having the decision in the corresponding axiomatic theory of the decisions, the artificial neural deciding 
network will pass from the initial state 0

zz [0][0];[0];;)z( Ss    in corresponding target 
T
zzz p;[0][0];;)z( Ss   . I.e., for each z-task, having the decision in the corresponding axiomatic decisions 

theory, the ANDN will pass from the initial state 0
zz [0][0];[0];;)z( Ss    to corresponding target 

T
zzz p;[0][0];;)z( Ss    state. In connection with restrictions on paper size the proof of the theorems majority 

will be omitted. 
Theorem 1. A necessary condition of the task decision by ANDN is completeness in Robinson-sense of a used 

fragment of the multilevel axiomatic theory of automatic decisions of formalized control tasks [6]. 
Theorem 2. A sufficient condition of decision search resolvability of a task by ANDN is completeness in 

Robinson-sense of a used fragment of the multilevel axiomatic theory of automatic decisions of formalized control 
tasks [6].  

2.2. Research of resolvability of decisions of an artificial neural planning network 

Resolvability of decisions theories leads to that for tasks having the decision it will be found by final number of 
search steps. In our case it is necessary to show, that use of an artificial neural planning network does not break 
resolvability of the multilevel axiomatic theory of automatic decisions (MATAD) of formalized control tasks [6]. It 
should be consequence of organization features of the ANDN and her method of task's decision search. For 
maintenance of resolvability preservation MATAD of formalized control tasks [6] the ANDN should guarantee a 
solution finding by final number of task's decision steps, or refusal if it does not exist. Therefore we shall prove the 
following statement. 

Theorem 3. The target state of artificial neural planning network for the tasks having the decision is achieved by 
the decision steps, quantity which are not exceeding number equal the operations quantity of task decision plan with 
one added step. 

For the proof we shall examine possible situations during the decision of a task by means of ANPN. 
Case 1. Let the decision of a z-task is achieved by application of the operation described by an axiom of a kind 

 )o(R)o(D:o 111 , where )(D)o(D z1  )(R)o(R z1  , )z(T)o(T 1 . I.e., the axiom does not 
contain neither requirements for result and nor conditions of applicability.  

The report of ANPN-work (step-by-step record of states): 
Step 1:  1111 p,o,d),z(S , 00

do
01 d)(dd  ow , )d( 1

od
1 wo  = }t)(,d)(|{ 1  oToRo = 

t})(,d)(|{ 1
1

11  oToRo , }{pp 1
101 oo  . 

Step 2:  2222 p,o,d),z(S ,  )()()()()()()(dd 111111
1

do
12 oToDoRoToRoDow , 

 )d( 2
od

2 wо , }{ppp 1
1212 oo  . 

Because 2p , 2d , 2o ,  then the decision is received. Thus, 2111)p( 2  cardNstep . Hence, 
the statement of the theorem 3 is fair for the given situation. 

Case 2. Let the decision of a z-task is reached by application of the operation described by an axiom of a kind 
)o(T)o(R)o(D:o 1111  , where )(D)o(D z1  , )(R)o(R z1  ,  )z(T)o(T 1 , 

I.e., the axiom does not contain conditions of applicability. And the decisions theory contain the axiom of a kind 
 )o(R)o(D:o 222 , where )o(T)o(R 12  , )(D)o(D z2  . 

The report of ANPN-work (step-by-step record of states): 
Step 0 (an initial state):  0000 p,o,d),z(S , )()()((z)d 211dz

0 oDoRoDw  , 0o , 0p . 
Step 1:  1111 p,o,d),z(S , 00

do
01 d)(dd  ow , }{pp 1

101 oo  , )d( 1
od

1 wo  =
}t)(,д)(|{ 1  oToRo = }t)(,d)(|{ 1

1
11  oToRo . 

Step 2:  2222 p,o,d),z(S , )(dd 1
do

12 ow = )()()(-)(-)()(- 111211 oToDoRoDoRoD  = 
)(-)( 21 oDoT , )d( 2

od
2 wо  = }t)(,d)(|{ 2  oToRo = })(,d)(|{ 2

2
22  oToRo , },{pp 21

212 ooо  . 
Step 3:  3333 p,o,d),z(S ,  )()()()()(dd 2212

2
do

23 oDoRoToDоw ,  )d( 3
od

3 wо , 
},{ppp 21

2323 ooo  . 
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