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a b s t r a c t

Amethodology is proposed to derive Bayesian experimental designs for discriminating be-
tween rival epidemiologicalmodelswith computationally intractable likelihoods.Methods
from approximate Bayesian computation are used to facilitate inference in this setting, and
an efficient implementation of this inference framework for approximating the expectation
of utility functions is proposed. Three utility functions for model discrimination are con-
sidered, and the performance of these utilities is explored in designing experiments for
discriminating between three epidemiological models; the death model, the Susceptible–
Infected model, and the Susceptible–Exposed–Infected model. The challenge of efficiently
locating optimal designs is addressed by an adaptation of the coordinate exchange algo-
rithm which exploits parallel computational architectures.

© 2018 Published by Elsevier B.V.

1. Introduction 1

Epidemiological studies are important for understanding how a disease is transmitted, and for the development of pre- 2

ventativemeasureswhichmight reduce or limit the spread of the disease. Informative data collection is crucial in developing 3

this understanding, and can be achieved by conducting an experiment according to an optimal design that provides the 4

maximum amount of information to address the aim of the experiment which could include model selection, parameter 5

estimation and prediction. However, the derivation of optimal designs in epidemiological experiments is a challenging 6

task as most epidemiological models contain likelihoods which are computationally expensive to evaluate (Becker, 1993). 7

Consequently, only a few attempts have been made in both the frequentist literature (Pagendam and Pollett, 2013) and the 8

Bayesian literature (Cook et al., 2008; Drovandi and Pettitt, 2013) to derive optimal designs for experiments in epidemiology. 9

In the frequentist literature, the design of epidemiological experiments has been facilitated via an approximation to 10

the likelihood. Pagendam and Pollett (2013) used a Gaussian diffusion approximation in deriving D-optimal experimental 11

designs to estimate parameters of the SI (Susceptible–Infected), SIS (Susceptible–Infected–Susceptible) and SIR (Susceptible– 12

Infected–Recovered) epidemic models. The designs derived in this work were dependent upon point estimates of the 13

parameter values, and are thus termed locally optimal designs. In contrast, the Bayesian approach provides a framework 14

to account for the uncertainty in parameters when deriving optimal designs (Ryan, 2003). This was demonstrated in the 15

work of Cook et al. (2008) who derived optimal observation times for parameter estimation of the death model and the SI 16

model. In their work, the moment closure method was used to approximate the likelihood of the SI model. 17

Recent developments in approximate Bayesian computation (ABC) provide a comprehensive framework to undertake 18

Bayesian inference and design when the likelihood is intractable. Drovandi and Pettitt (2013) presented a likelihood-free 19
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method to derive Bayesian designs for parameter estimation of Markov process models of epidemics and macroparasite1

population evolution using the ABC rejectionmethod (Beaumont et al., 2002). In thework of Price et al. (2016), ABC rejection2

was used to approximate a utility function based on the Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951) in3

designing experiments for parameter estimation of epidemiological models.4

Previous work in the design of epidemiological experiments has focussed on estimatingmodel parameters of an assumed5

true model to describe the process of interest (Cook et al., 2008; Drovandi and Pettitt, 2013; Pagendam and Pollett, 2013).6

However, in reality, there may be uncertainty about the true epidemiological process (see Lee et al., 2015), and indeed, the7

purpose of the experiment could be to determine how a disease spreads. Hence, the lack of knowledge about the true model8

should be taken into account when designing efficient experiments. Thus, the need for the development of new methods9

to design efficient epidemiological experiments for model discrimination motivates the work described in this article. Here,10

we consider the design problem of locating a set of observation times which yields information to efficiently discriminate11

between competing models. Moreover, previous work on designing experiments for model discrimination (Atkinson and12

Fedorov, 1975; Cavagnaro et al., 2010; Drovandi et al., 2014;Woods et al., 2017; Overstall et al., 2018)were limited tomodels13

where the likelihood can be easily computed. Thus, this is the first paper to propose methods for finding Bayesian optimal14

designs for discriminating between models with intractable likelihoods.15

Finding the optimal design for an experiment requires the maximisation of an expected utility over all possible designs,16

and it is a challenging optimisation problem because the utility surface is noisy and may be relatively flat around its17

maximum. Further, it can be computationally prohibitive to undertake the optimisation even for experiments with a18

moderate number of design variables (see the review by Ryan et al. (2016)). Müller (1999) proposed a simulation-based19

approach that converts the optimisation problem to a problem of sampling from a target distribution for which the mode is20

the optimal design. First, samples are drawn from the target distribution h(θ, y, d) (joint distribution of the parameters,21

data, and design) using Markov chain Monte Carlo (MCMC) simulations, and then the estimated multivariate mode of22

the marginal distribution of d is deemed the optimal design. The Müller algorithm has been widely used in the Bayesian23

experimental design literature (Stroud et al., 2001; Cook et al., 2008; Drovandi and Pettitt, 2013; Ryan et al., 2014). However,24

in practice, this method suffers from slow convergence. Moreover, sampling from the joint distribution h(θ, y, d) using an25

MCMCmethod and determining themultivariatemode for a large number of design variables are computationally expensive26

tasks (Drovandi and Pettitt, 2013).27

Alternatively, existing local search optimisation methods can be used to locate the optimal design. For instance, the28

coordinate exchange (CE) algorithm of Meyer and Nachtsheim (1995) has been used to find D-optimal designs in screening29

experiments by Goos and Jones (2011) and Palhazi Cuervo et al. (2016). Further, Gotwalt et al. (2009) used the coordinate30

exchange algorithm in constructing pseudo-Bayesian optimal designs for parameter estimation of non-linear models. The31

coordinate exchange algorithm starts from a given initial design and iteratively maximises the utility function by changing32

one design variable at a time while keeping all other variables fixed. This iterative procedure continues until there is little33

or no improvement in the value of the utility. In practice, this may require a large number of utility evaluations, especially34

when continuous design variables are involved in the experiment. Recent work of Overstall and Woods (2017) extends the35

idea of the coordinate exchange algorithm by considering an approximation of the expected utility as a function of a single36

design variable conditional on the remaining fixed variables. This approximation is facilitated by fitting a Gaussian process37

emulator based on a relatively small number of utility evaluations. This emulator is then used to approximate the utility38

function across the entire range of the considered variable and to estimate the maximum at each iteration.39

In this work, evaluating the approximate utility of a given design is highly computational as it requires a large number40

of simulations from the model in order to approximate a posterior distribution via ABC methods. Consequently, finding41

Bayesian optimal designs for models with intractable likelihoods in a continuous design space could be computationally42

prohibitive. However, the use of a discrete design space to locate optimal designs significantly reduces the required43

computational effort as it allows the use of pre-simulated data for the posterior approximations in utility evaluations44

(discussed later). This idea has been used by Drovandi and Pettitt (2013) within the Müller algorithm and by Price et al.45

(2016) who finds the optimal design using an exhaustive search. However, these methods quickly become computationally46

intensive as the number of design dimensions increases. Hence, in this setting, it would be advantageous to reduce the47

required number of utility evaluations when searching for the optimal design. For this purpose, we propose using the48

refined coordinate exchange algorithmwhere, at each iteration of the exchange algorithm, the coordinate space reduces and49

becomes more refined. Further, the algorithm is structured such that parallel computational architectures can be exploited.50

As will be seen, through using this algorithm, we are able to efficiently locate Bayesian designs in higher dimensions than51

previously explored in the design literature related to models with intractable likelihoods.52

The paper is organised as follows. In the next section, the problemofmodel choice in the Bayesian framework is described.53

Section 3 presents the utility functions used in thiswork, and Section 4 describes the ABCmethods that are used for inference54

and in estimating the expected utility of a given design. An adapted version of the coordinate exchange algorithm which55

exploits parallel computational architectures is presented in Section 5. In Section 6, the design for a pharmacokinetic model56

is considered to explore and demonstrate the performance of our proposed optimisation algorithm. Following this, two57

epidemiological examples are considered to demonstrate the performance of three utility functions, namely the mutual58

information utility, the Ds-optimal utility and the Zero–One (0–1) utility for model discrimination. The paper concludes59

with a discussion and suggestions for further research.60
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