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a b s t r a c t 

We characterize a range of Stochastic Dominance (SD) relations by means of finite systems of convex 

inequalities. For ‘SD optimality’ of degree 1 to 4 and ‘SD efficiency’ of degree 2 to 5, we obtain exact 

systems that can be implemented using Linear Programming or Convex Quadratic Programming. For SD 

optimality of degree five and higher, and SD efficiency of degree six and higher, we obtain necessary 

conditions. We use separate model variables for the values of the derivatives of all relevant orders at all 

relevant outcome levels, which allows for preference restrictions beyond the standard sign restrictions. 

Our systems of inequalities can be interpreted in terms of piecewise polynomial utility functions with a 

number of pieces that increases with the number of outcomes and the degree of SD. An empirical study 

analyzes the relevance of higher-order risk preferences for comparing a passive stock market index with 

actively managed stock portfolios in standard data sets from the empirical asset pricing literature. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Stochastic Dominance (SD) ranks risky prospects based on 

general regularity conditions for decision making under risk 

( Hadar & Russell, 1969; Hanoch & Levy, 1969; Quirk & Sapos- 

nik, 1962; Rothschild & Stiglitz, 1970; Whitmore, 1970 ). Recent 

applications in OR/MS include Lizyayev and Ruszczynski (2012) , 

Meskarian, Xu, and Fliege (2012) , Roman, Mitra, and Zverovich 

(2013) , Post and Kopa (2013) , Dupacov and Kopa (2014) , Hu, Mello, 

and Mehrotra (2014) , Podinovski (2014) , Armbruster and Delage 

(2015) , Eeckhoudt, Fiori, and Gianin (2016) , Longarela (2016) , 

Meyer (1977) , Post and Poti (2016) and Post and Kopa (2016) . 

The classical applications of SD compare a given prospect with 

a single alternative. More challenging applications involve multiple 

alternatives. In these cases, the concepts of ‘SD optimality’ ( Bawa, 

1975; Fishburn, 1974 ) and ‘SD efficiency’ ( Kopa and Post, 2009; 

Kuosmanen, 2004; Post, 2003; Post and Versijp, 2007; Scaillet & 

Topaloglou, 2010; Lizyayev, 2012a; 2012b; Post, 2016; Longarela, 

2016 ) apply. In these multivariate applications, a closed-form so- 

lution generally does not exist and numerical optimization is re- 

quired. 

Most studies focus on the first three degrees of SD ( N = 1 , 2 , 3 ): 

first-degree SD (FSD), second-degree SD (SSD) and third-degree 

SD (TSD). In an ambitious attempt to generalize existing results, 
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Post and Kopa (2013) develop systems of linear inequalities for 

general N th degree SD (NSD; N ≥ 1). With this general for- 

mulation, a large class of SD relations can be analyzed using 

Linear Programming (LP). The relevant LP problems are relatively 

small and convenient for large-scale applications, simulations and 

statistical resampling methods. 

Despite its merits, the Post and Kopa (2013) approach is not 

exact but an approximation for SD optimality tests of degree 

N ≥ 3 and SD efficiency tests of degree N ≥ 4. Our study proposes 

a general revision of Post and Kopa (2013) , aiming at stronger 

operational conditions for higher-degree SD relations. The revision 

applies to a range of SD relations; we revise even the simple case 

of pairwise TSD, which arises as a special case of SD optimality 

with two prospects and N = 3 . 

Our strongest results are obtained for SD optimality of degree 

N = 1 , 2 , 3 , 4 and SD efficiency of degree N = 2 , 3 , 4 , 5 . For these 

SD relations, we find finite and exact systems of convex inequal- 

ities that can be implemented using LP or Convex Quadratic 

Programming (CQP). By comparison, the linear systems of Post and 

Kopa (2013) are exact only for optimality of degree N = 1 , 2 and 

efficiency of degree N = 2 , 3 . 

For optimality of degree N ≥ 5 and efficiency of degree N ≥
6, our conditions are necessary but not sufficient. We do not con- 

sider this an important limitation. The arguments for restricting 

higher-order derivatives are less compelling than for lower-order 

derivatives. In addition, these restrictions generally have minimal 

effects on the flexibility to model the relevant utility levels (for 

optimality tests) or marginal utility levels (for efficiency tests). 

http://dx.doi.org/10.1016/j.ejor.2017.03.035 

0377-2217/© 2017 Elsevier B.V. All rights reserved. 

Please cite this article as: Y. Fang, T. Post, Higher-degree stochastic dominance optimality and efficiency, European Journal of Operational 

Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.03.035 

http://dx.doi.org/10.1016/j.ejor.2017.03.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:danielfang@163.com
mailto:thierrypost@hotmail.com
http://dx.doi.org/10.1016/j.ejor.2017.03.035
http://dx.doi.org/10.1016/j.ejor.2017.03.035


2 Y. Fang, T. Post / European Journal of Operational Research 0 0 0 (2017) 1–10 

ARTICLE IN PRESS 

JID: EOR [m5G; April 4, 2017;20:58 ] 

Our analysis introduces model variables for the values of all 

( N − 1 ) relevant derivatives at all T relevant outcome levels. The 

additional model variables are not only needed for higher-degree 

SD relations but can also be used to impose restrictions on the 

values of the derivatives in addition to the standard restrictions 

on the signs. This feature is relevant for tests based on Decreasing 

Absolute Risk Aversion (DARA) SD ( Vickson, 1975 ), Stochastic Dom- 

inance With respect to a Function (SDWRF; Meyer, 1977 ), Almost 

Stochastic Dominance (ASD; Leshno & Levy, 2002; Tzeng, Huang, & 

Shih, 2013 ) and Standard Stochastic Dominance’ (StSD; Post, 2016 ). 

One way to interpret our revision is that we use piecewise 

polynomial functions with a number of pieces that increases 

with the number of outcomes ( T ) and the relevant degree of 

SD ( N ). This characterization generalizes results by Hadar and 

Seo (1988) and Rothschild and Stiglitz (1970) on representative 

utility functions for pairwise comparison based on lower-degree 

SD rules. Similarly, Caballe and Pomansky (Section 4 1996 ), derive 

representative functions of infinite-degree SD, Kopa and Post 

(2009) and Post (2003) deal with the representation of FSD and 

SSD efficiency and Post, Fang, and Kopa (Section 3, 2015 ), with 

DARA SD optimality and efficiency. 

We focus on SD optimality and efficiency tests for a given 

prospect. The problem of choosing a portfolio which stochastically 

dominates a given benchmark portfolio ( Shalit & Yitzhaki, 1994; 

Dentcheva & Ruszczynski, 20 03; Kuosmanen, 20 04; Roman, Darby- 

Dowman, & Mitra, 2006; Scaillet & Topaloglou, 2010 ) is beyond 

the scope of this study. However, there exists a close link between 

these two topics. Notably, Kopa and Post (2015) , Armbruster 

and Delage (2015) and Longarela (2016) construct SSD efficient 

portfolios by searching simultaneously over portfolio weights and 

utility functions using LP. Our results could be used to extend 

their results to TSD, fourth-degree SD (FOSD) and fifth-order SD 

(FISD) using CQP. 

In an empirical study, we apply a range of portfolio efficiency 

tests to compare a passive stock market index with actively man- 

aged stock portfolios, in standard data sets from the empirical 

asset pricing literature. Our results show that the estimated pricing 

errors based on higher-order SD, as well as modifications of SSD 

based on SDWRF and ASSD, tend to be larger and more significant 

than standard mean-variance (MV) estimates, as a result of using 

pricing kernels that exclude arbitrage opportunities and account 

for systematic skewness. These findings add to the mounting 

evidence against market portfolio efficiency. 

Appendix A presents formal proofs for our lemmas and propo- 

sitions; Appendix B specifies the LP and CQP problems that we use 

for our numerical example in Section 7 and empirical application 

in Section 9 . 

2. Preliminaries 

We use the general framework of Post and Kopa (2013) . 

Their analysis considers M ≥ 2 prospects with risky outcomes 

x 1 , . . . , x M 

∈ D := [ A, B ] , −∞ < A < B < + ∞ . The outcomes are 

treated as random variables with a discrete joint probability 

distribution characterized by R mutually exclusive and collectively 

exhaustive scenarios with probabilities p r > 0, r = 1 , . . . , R . 

We use x i , r for the outcome of prospect i in scenario r . We 

collect all possible outcomes in the joint support Y := { y : y = 

x i,r i = 1 , . . . , M; r = 1 , . . . , R } , rank these values in ascending or- 

der, y 1 ≤ . . . ≤ y S , and use p ∗
i ;s := P [ x i = y s ] = 

∑ R 
r=1 p r I (x i,r = y s ) , 

i = 1 , . . . , M; s = 1 , . . . , S. 

Decision makers’ preferences are described by von Neumann–

Morgenstern utility functions. To implement SD of degree N ≥ 1, 

we consider the following set of monotonic utility functions: 

U N := { u ∈ C N : (−1) n +1 u 

n (x ) ≥ 0 , n = 0 , . . . , N} , (1) 

where u 0 (x ) = u (x ) and u n ( x ) := ∂ n u / ∂x n , n = 1 , . . . , N. 

The economic interpretation of the restrictions on the first 

two derivatives is well-established: u 1 ( x ) ≥ 0 amounts to non- 

satiation and u 2 ( x ) ≤ 0 means risk aversion. The higher-order 

derivatives govern the higher-order risk preferences. Notably, u 3 ( x ) 

≥ 0 means ‘prudence’, or skewness preference, and u 4 ( x ) ≤ 0 

equals ‘temperance’, or kurtosis aversion. For discussions of the 

behavioral characterization and consequences of higher-order risk 

preferences, we refer to Eeckhoudt and Schlesinger (2006) and 

Eeckhoudt et al. (2016) and references therein. 

The utility set U N has two redundant but convenient features. 

First, the restriction u ( x ) ≤ 0 is redundant, because utility anal- 

ysis is location invariant. This restriction is however convenient 

because it implies −u 1 (x ) ∈ U N−1 , which is a useful property in 

Section 6 . Since the below definitions do not require the values 

of u N ( x ), the requirement that the N th derivative is continuous is 

also redundant and U N is equivalent to 

U 

∗
N : = { u ∈ C N−1 : (−1) n (u 

n (y ) − u 

n (x )) ≥ 0 , 

n = 0 , . . . , N − 1 ; y ≥ x } . 
The use of U N is however convenient to derive Lemma 1 with- 

out using sub-differential calculus. However, in Lemma 2 and 

Section 7 , we use U ∗
N 

to allow for jumps in the N th derivative. 

Definition 1 (Stochastic Dominance) . An evaluated prospect x i , i = 

1 , . . . , M, is dominated by alternative x j , j = 1 , . . . , M, in terms of 

NSD, N ≥ 1, if the former is strictly preferred to the latter for all 

permissible utility functions u ∈ U N : 
R ∑ 

r=1 

p r u (x i,r ) < 

R ∑ 

r=1 

p r u (x j,r ) 

⇔ 

S ∑ 

s =1 

u (y s )(p ∗i,s − p ∗j,s ) < 0 . (2) 

Various applications of SD consider a discrete choice set, 

X 0 := { x 1 , . . . , x M 

} , M ≥ 2. This specification is relevant in welfare 

economics, where SD is widely applied following ( Atkinson, 1970 ), 

because it is not possible to mix welfare distributions from differ- 

ent countries or periods. Similarly, in health economics, medical 

treatments are often indivisible and mutually exclusive. 

Definition 2 (SD admissibility) . An evaluated prospect x i , i = 

1 , . . . , M, is admissible in terms of NSD, N ≥ 1, if it is not domi- 

nated by any alternative combination x ∈ X 0 , in terms of NSD. 

Algorithms for implementing this concept in an efficient man- 

ner were developed in Porter, Wart, and Ferguson (1973) and Bawa, 

Lindenberg, and Rafsky (1979) . The admissibility concept however 

became obsolete after Bawa (1985) developed LP programs to 

implement a more powerful concept by Fishburn (1974) : 

Definition 2’ (SD optimality) . An evaluated prospect x i , i = 

1 , . . . , M, is optimal in terms of NSD, N ≥ 1, if it is preferred 

to every alternative x ∈ X 0 for some permissible utility function 

u ∈ U N : 
R ∑ 

r=1 

p r u (x i,r ) ≥
R ∑ 

r=1 

p r u ( x r ) ∀ x ∈ X 0 

⇔ 

S ∑ 

s =1 

u ( y s ) 
(

p ∗i,s − p ∗j,s 
)

≥ 0 , j = 1 , . . . , M. (3) 

For M = 2 , the two definitions are equivalent. However, for 

M > 2, Definition 2 is a necessary but not sufficient condition for 

Definition 2’ . Put differently, a prospect can be non-optimal for 

all permissible utility functions without being dominated by any 

individual alternative. 
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