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a b s t r a c t 

We propose a new approach for tumor immunotherapy which is based on a switching control strat- 

egy defined on domains of attraction of equilibria of interest. For this, we consider a recently derived 

model which captures the effects of the tumor cells on the immune system and viceversa, through 

predator–prey competition terms. Additionally, it incorporates the immune system’s mechanism for pro- 

ducing hunting immune cells, which makes the model suitable for immunotherapy strategies analysis 

and design. For computing domains of attraction for the tumor nonlinear dynamics, and thus, for deriv- 

ing immunotherapeutic strategies we employ rational Lyapunov functions. Finally, we apply the switching 

control strategy to destabilize an invasive tumor equilibrium and steer the system trajectories to tumor 

dormancy. 

© 2016 Published by Elsevier Inc. 

1. Introduction 1 

Developing dynamical models which can be employed to de- 2 

scribe and predict tumor evolution has been the focus of a consid- 3 

erable amount of research work in the past decades. The majority 4 

of this work is based on capturing the competition interaction be- 5 

tween the immune cells and cancer cells, which turns out to be 6 

dynamical and nonlinear. See [1] for a collection of such models, 7 

or the more recent [2] for a more specific survey focused on tu- 8 

mor dormancy. This interaction is best understood if seen from an 9 

evolutionary perspective, as the competition of two populations for 10 

space in the tissue. Such models have been developed and stud- 11 

ied previously in the literature [3,4] . Although the model proposed 12 

therein is a two states Lotka–Volterra model, it is able to effectively 13 

capture certain phases in tumor development and growth. Some 14 

other type of models take into account also the immune system’s 15 

mechanism of producing hunting immune cells (killer T-cells) by 16 

conversion from resting immune cells (helper T-cells [5] . This kind 17 

of models is particularly interesting for immunotherapy. 18 

Immunotherapy is a type of treatment which uses certain parts 19 

of the immune system to fight tumor growth and can act towards 20 

boosting the immune system in a general way or by helping it to 21 

attack cancer cells specifically. If the mechanism which produces 22 

hunting immune cells acts optimally, this has great influence on 23 
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helping eradicating cancer or at least on driving it to dormancy. 24 

The usefulness of a dynamical model which incorporates this 25 

mechanism comes from the fact that such a model allows for 26 

assessment of immunotherapy effectiveness and for designing new 27 

strategies. 28 

In this work we consider the model proposed in [6] for describ- 29 

ing the tumor–immune system predator–prey interaction, which 30 

also incorporates the dynamics driving the immune system itself, 31 

i.e. the conversion of resting cells to hunting ones. The considered 32 

model is polynomial of order two and has three states, which rep- 33 

resent the tumor population, the hunting immune cells population 34 

and the resting immune cells population. For predicting treatment 35 

outcome or designing treatment strategies, it is not sufficient to 36 

assess whether a certain equilibrium becomes stable or unstable 37 

under treatment. On one hand, it is also necessary to be able to 38 

say from which set of initial conditions the system will converge 39 

to that certain equilibrium, i.e. by computing the domain of attrac- 40 

tion. And on the other hand, treatment strategies should take into 41 

account destabilizing an unhealthy equilibria and adapting thera- 42 

pies until the desired equilibrium is reached, with minimal side 43 

effects to the patient. Thus, the focus on immunotherapies, and 44 

consequently on the model parameters which are responsible for 45 

boosting the immune response against cancer. 46 

The idea that maintaining a stable dormant tumor might ac- 47 

tually increase a patient’s survival chances more than by trying 48 

to completely eradicate the tumor was previously proposed [7] . 49 

In terms of tumor dynamical models, this implies that the opti- 50 

mal treatment tactic would be to try to maintain the stable tumor 51 
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dormancy equilibrium. Therefore, the goal of the proposed domain 52 

of attraction based immunotherapy strategy is to steer the tumor 53 

growth dynamics to the tumor dormancy equilibrium of the pro- 54 

posed model. 55 

The paper is structured as follows. In Section 2 the notation 56 

and instrumental tools which are used for analysis and control 57 

law design are introduced. In Section 3 the tumor growth model 58 

derived in [6] , as well as a classical predator–prey tumor growth 59 

model are presented. The proposed therapy strategy is described 60 

in Section 4 . The analysis carried out in [6] is briefly recalled in 61 

Section 4.1 , while the application of the switching control law on 62 

the newly proposed model is illustrated for one scenario example 63 

in Section 4.2 . Summarizing remarks are drawn in Section 5 . 64 

2. Tools 65 

For constructing the procedure developed in this paper, some 66 

concepts and tools from nonlinear systems theory, and in particu- 67 

lar Lyapunov theory are required. These tools will be elaborated in 68 

this section. 69 

2.1. Tools for analysis 70 

We proceed by introducing the notation and formally defining 71 

the theoretical tools that will be used to compute domains of at- 72 

traction of equilibria of interest of a considered dynamical system. 73 

(See also [8] ). 74 

The set of non–negative reals is denoted by R + . For a vector 75 

x ∈ R 

n , let ‖ x ‖ denote an arbitrary Hölder norm. Let B ρ (p) denote 76 

the ball of radius ρ centered in p ∈ R 

n , defined as B ρ (p) = { x ∈ 77 

R 

n | ‖ x − p‖ ≤ ρ} . Given a point p ∈ R 

n we define a neighborhood 78 

of p , N (p) , as the ball B ρ (p) for some radius ρ . By N (p) + the pro- 79 

jection of N (p) on R 

n + is denoted, where R 

n + denotes the positive 80 

orthant in R 

n . 81 

Consider the continuous–time nonlinear autonomous system 82 

˙ x = f (x ) , (1) 

where f : X → R 

n is a locally Lipschitz map from the domain X ⊂83 

R 

n into R 

n . 84 

Assumption 2.1. x = 0 is an asymptotically stable equilibrium 85 

point of the system (1) . 86 

Note that for systems with nonzero equilibria, a transformation 87 

can be defined to translate the nonzero equilibria to the origin [9] . 88 

Consider the concept of domain of attraction [10,11] . 89 

Definition 2.2. The domain of attraction (DOA) of the origin for 90 

the system (1) is the set 91 

S := { x 0 ∈ R 

n : lim 

t→∞ 

x (t, x 0 , t 0 ) = 0 } , (2) 

where x ( ·, x 0 , t 0 ) denotes the solution of (1) corresponding to the 92 

initial condition x 0 at time t 0 = 0 . 93 

Definition 2.3. A set S ∈ R 

n is called an invariant set w.r.t. (1) if 94 

for any initial condition x 0 ∈ S, it holds that x (t, x 0 , t 0 ) ∈ S for all t 95 

≥ t 0 . 96 

The DOA of an equilibrium for a given system is inherently an 97 

invariant set. Next, we will formally define positive systems [12] , as 98 

they are relevant for biological systems, such as the tumor growth 99 

system. 100 

Definition 2.4. The system defined by (1) is called positive if for 101 

any initial state x 0 in R 

n + , the solution x ( t , x 0 , t 0 ) will remain in 102 

R 

n + , for any t > t 0 = 0 . 103 

Therefore, the positive orthant is an invariant set for a posi- 104 

tive system. A system is positive if the vector field at any state on 105 

the boundary of the positive orthant points into the interior of the 106 

positive orthant or along the boundary of the positive orthant. 107 

Definition 2.5. A function V : A → R , where A ⊆ R 

n and the ori- 108 

gin is in its interior, is called positive definite (positive semidefi- 109 

nite) on A if 110 

V (0) = 0 and V (x ) > 0 (V (x ) ≥ 0) , (3) 

for any x ∈ A \ { 0 } . V ( x ) is called negative definite (negative 111 

semidefinite) if −V (x ) is positive definite (positive semidefinite). 112 

Definition 2.6. Let V : A 

† → R , with A 

† ⊆ R 

n containing the ori- 113 

gin, be a continuously differentiable function with V (0) = 0 and 114 

the following properties: 115 

(a) V ( x ) is positive definite on A 

† and radially unbounded, i.e. 116 

V ( x ) → ∞ as ‖ x ‖ → ∞ 117 

(b) its derivative along the trajectories of (1) , ˙ V (x ) = ∇V � f (x ) , 118 

is negative definite on A 

† . 119 

Then V is called a Lyapunov function for the system (1) . 120 

The following result is a consequence of [ 13 , Theorem 1] and 121 

will be instrumental in the procedure for estimating the DOA of 122 

the origin of the system (1) . 123 

Theorem 2.7. Let V ( x ) be a Lyapunov function for the system (1) and 124 

consider the region 125 

A = { x : ˙ V (x ) ≤ 0 } . (4) 

Furthermore, let C ∗ be the largest positive value such that the level set 126 

V (x ) = C ∗ is contained in A . Then, the set 127 

S A = { x : V (x ) < C ∗} (5) 

is contained in the DOA of the origin of (1) , S . 128 

In [14] , it is shown that if f is continuously differentiable in a 129 

neighborhood of the origin, then there exists a maximal Lyapunov 130 

function which can be used to estimate the DOA exactly [ 14 , Theo- 131 

rem 2]. This function tends to infinity as x approaches the bound- 132 

ary ∂S of the DOA S . 133 

Definition 2.8 ( [14] ) . A function V m 

: R 

n → R + ∪ {∞} is called a 134 

maximal Lyapunov function for the system (1) if 135 

(a) V m 

(0) = 0 , V m 

( x ) > 0, for any x ∈ S \ { 0 } 136 

(b) V m 

( x ) < ∞ if and only if x ∈ S 137 

(c) V m 

( x ) → ∞ as x → ∂S and/or ‖ x ‖ → ∞ 138 

(d) ˙ V m 

is well defined and negative definite over S . 139 

When f is continuously differentiable, then V m 

( x ) → ∞ as x → 140 

∂S . If f is Lipschitz continuous on S, then V m 

can be taken contin- 141 

uously differentiable on S and then V m 

( x ) → ∞ as ‖ x ‖ → ∞ . 142 

Remark 2.9. In [ 14 , Theorem 1] it is shown that if it is possible to 143 

find a set A containing the origin in its interior and a continuous 144 

function satisfying the properties of a maximal LF on that set, then 145 

A is the same as the DOA S defined in (2) . This result implicitly 146 

assumes that there does not exist a ξ ∈ S ◦ such that lim 

x → ξ
V (x ) = ∞ . 147 

For any proper candidate LF, i.e. radially unbounded, this property 148 

obviously holds. As such, we consider in the definition above of a 149 

maximal LF, item c) the case when both V m 

( x ) → ∞ as x → ∂S and 150 

as ‖ x ‖ → ∞ hold. 151 

The next result will be of use with respect to the computation 152 

of DOA of positive systems. 153 

Fact 2.10. Let the sets S 1 , S 2 in R 

n be two invariant sets for system 154 

(1) . Then S 1 ∩ S 2 is an invariant set for system (1) . 155 
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