ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 50-1 (2017) 12490-12495

An Efficient Algorithm for Scheduling a
Flexible Job Shop with Blocking and
No-Wait Constraints *

A. Aschauer, F. Roetzer, A. Steinboeck, A. Kugi

Automation and Control Institute, Technische Universitit Wien,
Gusshausstrafie 27-29, 1040 Vienna, Austria ({aschauer, roetzer,
steinboeck, kugi}@acin.tuwien.ac.at)

Abstract: Optimal scheduling in industrial processes is crucial to ensure highest throughput
rates and low costs. This paper presents the implementation of a scheduling algorithm in
a hot rolling mill, which features several reheating furnaces and which is characterized by
bidirectional material flow, blocking, and no-wait constraints. The scheduling problem is solved
by a decomposition into a timetabling algorithm and a sequence optimization procedure. For
the timetabling task, where the sequence of products is assumed to be fixed, a new recursive
algorithm to generate a non-delay feasible schedule is developed. The sequence optimization
procedure searches for the optimum product sequence and makes heavy use of the timetabling
algorithm. A competitive starting sequence is generated by a construction heuristic and

iteratively improved by a tabu search algorithm.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: scheduling, timetabling, flexible job shop, parallel machines, blocking, no-wait
constraints, construction heuristic, tabu search, hot rolling mill, metal processing

1. INTRODUCTION

Hot rolling is a main cost driver in the production of metal
plates. Here, the reheating is highly time and energy con-
suming. If larger series of equal products are produced, it is
straightforward to schedule the reheating and rolling pro-
cess. However, large series are becoming rare. The increas-
ing diversification of product portfolios, individualization
of products, lean inventory, and just-in-time production
add to the complexity of the scheduling task. This is why
an optimal scheduling algorithm is required. It should
ensure best possible utilization of the available production
facilities and highest throughput rates. In the considered
plant, mainly molybdenum products are processed. This
valuable metal requires an accurate scheduling algorithm
to ensure that the material is rolled at the right time and
with the right temperature.

1.1 Problem Description

Figure 1 shows an outline of the considered plant. The
manipulator M conveys the raw material (slabs) from
the charging station to one of the four furnaces F1-F4
for reheating. After reheating, the manipulator moves the
product to the roller table with the reversing mill stand R,
where it is rolled in several rolling passes. Many products
require intermediate reheating steps or final annealing in
one of the furnaces. For this purpose, the products have
to be handled by the manipulator again. If furnaces are
operated at the same temperature, they can be considered
as identical. For every product, a production plan specifies

* Great thanks are addressed to the industrial research partner
Plansee SE supporting this work. Moreover, financial support from
the EU project Power Semiconductor and Electronics Manufactur-
ing 4.0 (SemlI40), under grant agreement No 692466, is gratefully
acknowledged. The project is co-funded by grants from Austria, Ger-
many, Italy, France, Portugal, and - Electronic Component Systems
for European Leadership Joint Undertaking (ECSEL JU).

F4 « [F furnace
M ... manipulator
F3
R ... roller table with
o LM reversing mill stand
Fl H o R

charging station

Fig. 1. Outline of the hot rolling mill.

the sequence of heating and rolling steps, the heating
temperatures, and the process times or at least their lower
and upper bounds.

Henceforth, a product is called a job and the single pro-
cessing and manipulation steps are called tasks. For every
job, the predefined sequence of tasks must be adhered to.
Moreover, waiting times between tasks are not allowed
due to the absence of space for the products to wait (no
buffer) and the product quality would suffer (temperature
decrease due to cooling and oxidation of the product sur-
face). The processing time for heating tasks has a lower
and an upper bound. If a heating task is scheduled to be
longer than the lower bound time, the respective furnace
is blocked longer than required, which may reduce the
throughput rate. Manipulation and rolling tasks have a
fixed duration, which should not be changed to avoid
wrong rolling temperatures. The furnaces, the manipula-
tor, and the roller table with the reversing mill stand are
called machines. The furnaces are operated at constant
temperatures, which are specified in the production plan.
Furnaces with identical temperatures are called parallel
machines. Each machine can only handle one task at a time

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2017.08.2056

A. Aschauer et al. / IFAC PapersOnLine 50-1 (2017) 12490—12495

and each job can only be processed by one machine at a
time. The objective of the desired scheduling algorithm is
the minimization of the makespan (total processing time)
of a given number of jobs. In this minimization procedure,
all constraints have to be satisfied.

1.2 Literature Review

The above problem is known in the literature as flexible
job shop scheduling problem (FJSP) with blocking and no-
wait constraints. The complexity of the task considered in
this paper originates in the existence of parallel machines.
For the classical job shop scheduling problem (JSP) with
unlimited buffers between consecutive tasks, there exists
a rich literature, e.g., (Pinedo, 2016; Blazewicz et al.,
2001). A common way to represent this scheduling problem
is a disjunctive graph. Pinedo (2016) described an exact
branch-and-bound algorithm for a JSP with two machines.
For larger problems, he recommends the so-called shifting
bottleneck heuristic (Pinedo, 2016). There are also some
studies on FJSPs, where certain tasks can be performed by
several machines. Brucker and Schlie (1991) were among
the first who addressed this problem. The complexity of
a FJSP roots in the fact that additionally an assignment
of tasks to machines is necessary. Important works have
been made by Paulli (1995) and Dauzere-Péreés and Paulli
(1997). Paulli (1995) presented a hierarchical approach
which first assigns tasks to machines and second solves
the classical JSP. Starting from this initial solution, this
procedure is iteratively repeated. That is, tasks are re-
assigned and the classical JSP is solved again. Dauzére-
Péres and Paulli (1997) described an integrated approach
of assignment and scheduling based on the help of an
extended disjunctive graph.

The literature on FJSPs with blocking and no-wait con-
straints is rather scarce. Hall and Sriskandarajah (1996)
and Allahverdi (2016) gave surveys of scheduling methods
with no-wait constraints. Most works in this field consider
flow shop scheduling problems. Nevertheless, some works
on JSPs are mentioned. Many successful approaches han-
dle the JSP with no-wait constraints by decomposing the
problem into a timetabling and a sequencing part. Schuster
and Framinan (2003) achieved excellent results with a
non-delay timetabling algorithm and a tabu search algo-
rithm for sequence optimization. Framinan and Schuster
(2006) could further improve these results by a combined
non-delay and inverse timetabling approach. Samarghandi
et al. (2013) presented a study about different combina-
tions of timetabling and sequencing algorithms. Raaymak-
ers and Hoogeveen (2000) examined a FJSP with blocking
and no-wait constraints. They decomposed the problem
into timetabling, machine assignment, and sequencing.
Mascis and Pacciarelli (2002) investigated the JSP with
blocking and no-wait constraints by generalized disjunc-
tive graph methods. They pointed out that these methods
entail a trade off between feasibility and quality of the
obtained solution.

1.3 Content

Feasibility is indispensable for the problem considered in
this paper. Therefore, the well established decomposition
into timetabling and sequence optimization is used in this
work. The contribution of this paper is the simultaneous
handling of no-wait and blocking constraints, where the
blocking time can also be limited. A recursive timetabling
algorithm is designed so that jobs are scheduled with mini-
mal finishing time without violating any constraints by all
of the jobs’ tasks. Moreover, to the best knowledge of the

12491
tins|cn(t)
0 0 2
120 | 1 ’7
20 | 2 %1
Q
360 1
600 2 0 —
: : 0 240 480 720
00 0 tins

Fig. 2. Capacity utilization of a machine type m with

Cm,max =

authors, the assignment to parallel machines is done in a
new way. In Section 2, the recursive timetabling algorithm
is presented. Section 3 focuses on sequence optimization.
A starting sequence is generated by a construction heuris-
tic and further improved by a tabu search algorithm. In
Section 4, scheduling results for data from an industrial
production environment are given. Conclusions are drawn
in Section 5.

2. TIMETABLING

In the course of timetabling, a given sequence of jobs is
scheduled one by one so that all constraints are satisfied
and the finishing time of each job is minimized. The
total number of jobs is Nj. Each job j € {1,...,N;}
is associated with N7 ; tasks. The timetabling algorithm
determines the starting times ¢;, and the durations d; ,,
Vi, n=1,...,Np; of all tasks of all jobs. The durations
djn of the tasks are bounded by the lower bounds d; ,

and by the upper bounds Ej,n which are specified by the
production plan. For the manipulating and rolling tasks,

these bounds are identical, i.e., d; ,, = d; . The sequence
of the jobs is stored in the so-called permutation vector

p : (p1.7"'7pi7"'7pNJ)7 Di € {17"'7N.]} with Di 7é Dj
for i # j.

The proposed algorithm also assigns tasks to machines. To
avoid an initial assignment of tasks to one of the parallel
machines, which could finally lead to suboptimal solutions,
so-called machine types m are defined. These machine
types have a maximum capacity ¢m mas according to
the number of parallel machines. The capacity utilization
¢m(t) over time is stored in a table of values for every
machine type, see Fig. 2. Free time slots occur whenever
¢m(t) < ¢m,maz holds true. When the timetabling of all N;
jobs is finished, an assignment of the tasks to machines can
be easily made.

Timetabling is done one by one for each job j. The tasks
n = 1,...,Np; of each job j must satisfy the following
constraints:

e No waiting times between consecutive tasks: t;, +
dj’n = tj’nJrl for n = 1, ey NT,j —1

e Valid durations of the tasks according to the lower
and upper bounds: d; ,, < d;, < djn, Vn

e The maximum number of simultaneous tasks at the
machine types: ¢y, (t) < ¢m maz, YM

Therefore, the recursive function FINDSCHEDULE() which
is summarized in Algorithm 1 is developed. The function
tries to schedule the tasks according to the strategy As
early & short as possible, as late & long as necessary.

ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/

https://isiarticles.com/article/105602

