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a b s t r a c t

In the paper we consider the problem of scheduling n identical jobs on 3 uniformmachines
with speeds s1, s2, and s3 to minimize the schedule length. We assume that jobs are
subjected to some kind ofmutual exclusion constraints,modeled by a cubic incompatibility
graph. We show that if the graph is 2-chromatic then the problem can be solved in O(n2)
time. If the graph is 3-chromatic, the problem becomes NP-hard even if s1 > s2 = s3.
However, in this case there exists a 10/7-approximation algorithm running in O(n3) time.
Moreover, this algorithmsolves the problemalmost surely to optimality if 3s1/4 ≤ s2 = s3.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Imagine you have to arrange a dinner for, say 30, people and you have at your disposal 3 round tables with different
numbers of seats (not greater than 15). You know that each of your guests is in bad relations with exactly 3 other people.
Your task is to assign the people to the tables in such a way that no two of them being in bad relations seat at the same table.
In the paper we show how to solve this and related problems.

Our problem can be expressed as the following scheduling problem. Suppose we have n identical jobs j1, . . . , jn, so we
assume that they all have unit execution times, in symbols pi = 1, to be processed on three non-identical machinesM1,M2,
and M3. These machines run at different speeds s1, s2, and s3, respectively. However, they are uniform in the sense that if a
job is executed on machine Mi, it takes 1/si time units to be completed. It refers to the situation where the machines are of
different generations, e.g. old and slow, new and fast, etc.

Our scheduling model would be trivial if all the jobs were compatible. Therefore we assume that some pairs of jobs
cannot be processed on the same machine due to some technological constraints. More precisely, we assume that each job
is in conflict with exactly three other jobs. Thus the underlying incompatibility graph G whose vertices are jobs and edges
correspond to pairs of jobs being in conflict is cubic. For example, all graphs in our figures are cubic. The number of jobs
n must be even, since the sum of degrees of all vertices in G, i.e. 3n, must be even. A load Li on machine Mi requires the

✩ This project has been partially supported by Narodowe Centrum Nauki under contract DEC-2011/02/A/ST6/00201.
∗ Corresponding author.

E-mail addresses: hanna@inf.ug.edu.pl (H. Furmańczyk), kubale@eti.pg.gda.pl (M. Kubale).

http://dx.doi.org/10.1016/j.dam.2016.01.036
0166-218X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2016.01.036
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:hanna@inf.ug.edu.pl
mailto:kubale@eti.pg.gda.pl
http://dx.doi.org/10.1016/j.dam.2016.01.036


2 H. Furmańczyk, M. Kubale / Discrete Applied Mathematics ( ) –

processing time P(Li) = |Li|/si, and all the jobs are ready for processing at the same time. By definition, each load forms
an independent set (color) in G. Therefore, in what follows we will be using the terms job/vertex and color/independent
set interchangeably. Since all tasks have to be executed, the problem is to find a 3-coloring, i.e. a decomposition of G into
3 independent sets I1, I2, and I3 such that the schedule length Cmax = max{P(Ii) : i = 1, 2, 3} is minimized, in symbols
Q3|pi = 1,G = cubic|Cmax.

In this paper we assume threemachines for the following reason. If there is only onemachine then there is no solution. If
there are two machines, the problem becomes trivial because it is solvable only if G is bipartite and it has only one solution
since there is just one decomposition of G into sets I1 and I2, each of size n/2. If, however, there are three machines and G is
3-chromatic, our problem becomes NP-hard. Again, if G is 4-chromatic (and m = 3), there is no solution.

There are several papers devoted to chromatic scheduling in the presence of mutual exclusion constraints. Boudhar in [1,
2] studied the problem of batch scheduling with complements of bipartite and split graphs, respectively. Finke et al. [8]
considered the problem with complements of interval graphs. Other models of batch scheduling with incompatibility
constraints were studied in [5,6]. Our problem can also be viewed as a particular variant of scheduling with conflicts [7]. In
all the papers the authors assumed identical parallel machines. However, to the best of our knowledge little work has been
done on scheduling problems with uniform machines involved (cf. Li and Zhang [12]).

The rest of this paper is split into two parts depending on the chromaticity of cubic graphs. In Section 2 we consider
2-chromatic graphs. In particular, we give an O(n2)-time algorithm for optimal scheduling of such graphs. Section 3 is
devoted to 3-chromatic graphs. In particular, we give an NP-hardness proof and an approximation algorithm with good
performance guarantee. Our algorithm runs in O(n3) time to produce a solution of value less than 10/7 times optimal,
provided that s1 > s2 = s3. Moreover, this algorithm solves the problem almost surely to optimality if 3s1/4 ≤ s2 = s3.
Finally, we discuss possible extensions of our model to arbitrary job lengths, to disconnected graphs, and tomore than three
machines.

2. Scheduling of 2-chromatic graphs

We begin with introducing some basic notions concerning graph coloring. A graph G = (V , E) is said to be equitably
k-colorable if and only if its vertex set can be partitioned into independent sets V1, . . . , Vk ⊂ V such that ∥Vi| − |Vj∥ ≤ 1 for
all i, j = 1, . . . , k. The smallest k forwhichG admits such a coloring is called the equitable chromatic number ofG and denoted
χ=(G). Graph G has a semi-equitable k-coloring, if there exists a partition of its vertices into independent sets V1, . . . , Vk ⊂ V
such that one of these subsets, say Vi, is of size ∉ {⌊n/k⌋, ⌈n/k⌉}, and the remaining subgraph G − Vi is equitably (k − 1)-
colorable. In the following we will say that graph G has (V1, . . . , Vk)-coloring to express explicitly a partition of V into k
independent sets. If, however, only cardinalities of color classes are important, we will use the notation [|V1|, . . . , |Vk|].

Let us recall somebasic facts concerning colorability of cubic graphs. It iswell known fromBrooks theorem [3] that for any
cubic graph G ≠ K4 we have χ(G) ≤ 3, where χ(G) is the classical chromatic number of G and K4 is the complete graph on
four vertices. On the other hand, Chen et al. [4] proved that every 3-chromatic cubic graph can be equitably colored without
introducing a new color. Moreover, since a connected cubic graph G with χ(G) = 2 is a bipartite graph with partition sets
of equal size, we have the equivalence of the classical and equitable chromatic numbers for 2-chromatic cubic graphs. Since
the only cubic graph for which the chromatic number is equal to 4 is K4, we have

2 ≤ χ=(G) = χ(G) ≤ 4 (1)

for any cubic graph. Moreover, from (1) it follows that for any cubic graph G ≠ K4, we have

n/3 ≤ α(G) ≤ n/2 (2)

where α(G) is the independence number of G. Note that the upper bound is tight only if G is bipartite.
Let Qk denote the class of connected k-chromatic cubic graphs and let Qk(n) ⊂ Qk stand for the subclass of cubic graphs

on n vertices, k = 2, 3, 4. Clearly, Q4 = {K4}. In what follows we will call the graphs belonging to Q2 bicubic, and the graphs
belonging to Q3- tricubic.

Asmentioned, ifG is bicubic then any 2-coloring of it is equitable and theremay be no equitable 3-coloring (cf. K3,3 shown
in Fig. 1). On the other hand, all graphs in Q2(n) have a semi-equitable 3-coloring of type [n/2, ⌈n/4⌉, ⌊n/4⌋]. Moreover,
they are easy colorable in linear time while traversing them in a depth-first search (DFS) manner.

Let si be the speed of machine Mi for i = 1, 2, 3, and let s = s1 + s2 + s3. Without loss of generality we assume that
s1 ≥ s2 ≥ s3. If there are just 6 jobs to schedule then the incompatibility graph G = K3,3 and there is only one decomposition
of it into 3 independent sets shown in Fig. 1(a), aswell as there is only one decomposition ofG into 2 independent sets shown
in Fig. 1(b), of course up to isomorphism. The length of minimal schedule is min{max{3/s1, 2/s2, 1/s3}, 3/s2}. Therefore, we
assume that our graphs have at least 8 vertices.

By an ideal schedulewe mean a schedule in which:

(i) machineM1 performs as many jobs as possible andM2 and M3 finish at the same time, if s1 ≥ s2 + s3, or
(ii) machinesM1,M2, and M3 all finish at the same time, if s1 < s2 + s3.

An example of ideal schedule is shown in Fig. 2(a).
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