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We study the multidimensional vector scheduling problem with selfish jobs, both in non-
cooperative and in cooperative versions, in two variants. These variants differ in the private 
costs of the jobs: in the first variant, the cost is the �∞ norm (maximum over components) 
while in the second variant it is the �1 norm (sum of components) of the load. We show 
existence of assignments that are Nash, strong Nash, weakly and strictly Pareto optimal 
Nash equilibria in these settings. For the first variant, we improve upon the previous 
bounds on the price of anarchy for the non-cooperative case, and find tight bounds for 
every number of machines and dimension. For the cooperative case we provide tight 
bounds on the strong prices of anarchy and stability, as well as tight bounds on weakly and 
strictly Pareto optimal prices of anarchy and stability, for every number of machines and 
dimension. For the second variant, which was not considered before, we again consider all 
the aforementioned measures, and find tight bounds, each of which being a function of the 
number of machines and the dimension, showing cardinal differences in the behavior of 
these measures both between the two variants, and in comparison to the one-dimensional 
case.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation and framework

In this paper we study the d-dimensional vector scheduling problem, which is a generalization of the well-known job 
scheduling problem [23,19]. In this problem, each job has d distinct resource requirements, and each machine has d corre-
sponding resources. Here, we focus on a game-theoretical setting. Such problems are often referred to as ‘vector assignment’ 
problems, as each job can be viewed as a d-dimensional vector, where each coordinate is associated with the corresponding 
requirement. This requirement can be available memory, disk space, CPU power, network bandwidth, or any other quality a 
computing unit may possess.1

Multidimensionality plays an important role in capturing incomparable characteristics of the jobs that are to be sched-
uled. For example, the memory requirements and the bandwidth requirements of a job in a distributed computer environ-
ment are incomparable. Multidimensionality also allows to differentiate between the costs that may be associated with each 
of these requirements.

* Corresponding author.
E-mail addresses: lea@math.haifa.ac.il (L. Epstein), elena.kleiman@gmail.com (E. Kleiman).

1 In an accompanying paper [16], we consider also the d-dimensional vector packing problem, that can be seen as a scheduling problem where resources 
are limited on each component. Even though the motivations for both versions are related, the problems are of different flavors.
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Multidimensional assignment problems of the kind that we consider in this paper appear in practice. For example, the 
Google ROADEF/EURO challenge 2011–20122 involved a set of machines with several resources, such as RAM and CPU, run-
ning processes which consume those resources. Another application of this problem is for resource scheduling for query 
optimization in parallel databases [8]. The parallel database consists of multiple independent processing units, each having 
shareable resources. Each query executed on one of these units has requirements for each of these resources, and can be de-
scribed as a multidimensional load vector. Work in [21,22] demonstrates the practical effectiveness of the multidimensional 
approach for this setting.

However, so far these problems have received relatively little attention in the literature (see e.g. [20,27,10,8]). In most 
work on scheduling it is assumed that the load of a job is described by a single aggregate measure. This assumption is 
typically done to simplify the analysis. But for large task systems, not accounting for the multidimensional nature of the 
jobs could result in a bad performance and reduced efficiency. With the rapidly growing popularity and importance of 
large-scale distributed computer environments such as the Internet, and more recently data centers implementing Cloud 
Computing [36,34,3], it becomes crucial to address various issues that are typical to such settings. Problems concerning 
efficient resource allocation for better resource utilization, and multidimensional job scheduling and packing in particular, 
are being two of the most significant problems in Cloud Computing. This fact has rekindled the interest of researchers 
in these classical optimization problems that have been studied since the early 1970’s. A game-theoretic framework is a 
natural choice for the purpose of studying such problems, as the users of these systems act selfishly, and often even in an 
uncoordinated manner. The importance of studying scheduling and packing problems under a game-theoretical framework 
is by now very well established and widely acknowledged (see e.g. [29,11,31,1,18,7,14]). We attempt to add to this body of 
knowledge by considering the multidimensional variant. A preliminary version of this paper appeared as [15].

1.2. The model

We now define the multidimensional job scheduling problem. There are n jobs, denoted by J = {1, 2, . . . , n}, each 
with d ≥ 1 components, that are to be assigned to a set of m parallel machines M = {M1, . . . , Mm} (also called machines 
1, 2, . . . , m), each with d ≥ 1 identical resources. A multidimensional job scheduling game, or simply, a vector scheduling 
game V S is characterized by a tuple

V S = 〈N, (Mk)k∈N , (ck)k∈N〉 ,

where N is the set of players. Each selfish player k ∈ N controls a single job and selects the machine to which it will be 
assigned. We associate each player with the job it wishes to run, that is, N = J . The set of strategies Mk for each job k ∈ N
is the set M of all machines. i.e. Mk = M . Each job must be assigned to one machine only. The outcome of the game is an 
assignment

A = (Ak)k∈N ∈ ×k∈NMk

of jobs to the machines, where Ak for each 1 ≤ k ≤ n is the index of the machine that job k chooses to run on. Let S denote 
the set of all possible assignments.

Let the vector of a job k ∈ {1, 2, . . . , n} be denoted by

pk = (p1
k , . . . , pd

k) ,

where pi
k ≥ 0, 1 ≤ i ≤ d and 

∑d
i=1 pi

k > 0. The value pi
k is the size or processing time of job k for the ith component. Let 

P i = ∑n
k=1 pi

k be the total processing time for the ith component. For a fixed schedule A, we let Li
� denote the load of the 

ith component for machine M� , that is Li
� = ∑

k:Ak=M�
pi

k . The load of machine M� is defined to be the maximum load in 
any dimension observed by machine M� in this assignment, that is L�(A) = max1≤i≤d Li

� .
The cost function of job k ∈ N is denoted by ck : S → R. In the first variant of the game that we consider, the cost ck

charged from job k for running on machine M� in a given assignment A is defined to be the load of machine M� , that 
is ck(�, A−k) = L�(A), where A−k ∈ S−k; here S−k = × j∈N\{k}M j denotes the actions of all players except for player k. 
Similarly, for K ⊆ N we denote by A−K ∈ S−K the set of strategies of players outside of K in an assignment A, when 
S−K = × j∈N\KM j is the action space of all players except for players in K . Each selfish job is interested in reducing its 
cost by moving to a less loaded machine, if possible, which will result in better QoS. The social cost of an assignment A is 
defined as the maximum load on any dimension of a machine, over all the machines, also called makespan, and is denoted 
by

SC(A) = max
1≤�≤m

L�(A) .

For the cost function defined here and the first variant of the game, the maximum can be taken over the players instead 
of the machines, as these are equivalent for a non-empty set of players; an empty machine will not achieve the maximum, 
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