
Contents lists available at ScienceDirect

Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor

Scheduling nonpreemptive jobs on parallel machines subject to exponential
unrecoverable interruptions

Alessandro Agnetisa, Paolo Dettib,⁎, Patrick Martineauc

a Dipartimento di Ingegneria dell'Informazione, Università di Siena, Italy
b Dipartimento di Ingegneria dell'Informazione, Università di Siena, Via Roma 56, 53100, Italy
c Laboratoire d'Informatiqued′Informatique – Polytech'Tours, Université de Tours, France

A R T I C L E I N F O

Keywords:
Unrecoverable interruptions
Parallel machines scheduling
NP-hardness
Exact and heuristic algorithms

A B S T R A C T

In this paper we consider the problem of scheduling n independent jobs on m parallel machines. If, while a
machine is processing a job, a failure (unrecoverable interruption) occurs, the current job as well as
subsequently scheduled jobs on that machine cannot be performed, and hence do not contribute to the overall
revenue or throughput. The objective is to maximize the expected amount of work done before an interruption
occurs. In this paper, we investigate the problem when failures are exponentially distributed. We show that the
problem is NP-hard, and characterize a polynomially solvable special case. We then propose both an exact
algorithm having pseudopolynomial complexity and a heuristic algorithm. A combinatorial upper bound is also
proposed for the problem. Experimental results show the effectiveness of the heuristic approach.

1. Introduction

In this paper we address the problem of scheduling n jobs on m
parallel machines which are subject to unrecoverable interruptions.
More and more computer systems are based on multiple computer
servers or dedicated data storage. When the number of computers is
large, the probability of failures is not negligible, and allocation and
scheduling policies must therefore adequately take it into account [3].
Classical grid schedulers plan jobs on parallel machines for one or
several windows [4], i.e., each machine receives a set of jobs to execute
in a certain time window. If the machine interrupts at time t during the
window, all jobs that are unfinished at time t are lost. Another
possibility to access CPU resources is to be connected to a cloud
system. In this setting, some computer can be shutdown or extracted
from the cloud without sending a message and the jobs it was
processing are lost. In all the above cases, a job can be interrupted
without the possibility to continue on another machine. The situation
we consider is therefore similar to the model described by Benoit et al.
[5,6]. In their work, a certain computing workload has to be allocated
to a number of remote computers, each of which is subject to
interruptions (of known likelihood) that kill all work in progress on
it. The problem is how to allocate the workload on the remote
computers so that the expected amount of completed work is max-
imized. Unlike [5,6], here we are not concerned with a “divisible”
workload, but rather we have a finite set of jobs, each of which requires

a certain processing time. Also, we do not consider job checkpointing
[10], as this requires some context-switching and is therefore relatively
expensive.

In general, the chances of successfully carrying out a job depend on
the failure process as well as on job features. Typically, the shorter a
job, the higher the probability of success. As for the failure process, in
this paper we address the case in which the time between machine
failures is exponentially distributed. This implies that the success
probability of a job does not depend on its starting time, but only on its
duration. The problem, which we denote as Exponential
Unrecoverable Interruption Scheduling Problem (EUISP), consists in
allocating the jobs to the machines and sequencing them in order to
maximize the expected amount of completed work achieved by the
system.

In this paper we present a number of results concerning the
complexity of EUISP and viable solution approaches. First we elaborate
on the fact that, if the machines have identically distributed failure
processes, the problem can be formulated as a special case of another
problem known in the literature as Unreliable Job scheduling Problem
(UJP) [2]. We then show that EUISP is in general NP-hard even for
m=2 identical machines, and we characterize a special class of
instances of EUISP which can be efficiently solved. Thereafter we
consider two solution approches, namely i() an exact, dynamic-pro-
gramming-based solution algorithm and ii() a list scheduling heuristic
algorithm. The exact algorithm has pseudopolynomial complexity (for a

http://dx.doi.org/10.1016/j.cor.2016.10.013
Received 8 January 2015; Received in revised form 25 October 2016; Accepted 26 October 2016

⁎ Corresponding author.
E-mail addresses: agnetis@dii.unisi.it (A. Agnetis), detti@dii.unisi.it (P. Detti), patrick.martineau@univ-tours.fr (P. Martineau).

Computers & Operations Research 79 (2017) 109–118

0305-0548/ © 2016 Published by Elsevier Ltd.
Available online 28 October 2016

crossmark

http://www.sciencedirect.com/science/journal/03050548
http://www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.10.013
http://dx.doi.org/10.1016/j.cor.2016.10.013
http://dx.doi.org/10.1016/j.cor.2016.10.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.10.013&domain=pdf

fixed number of machines), showing indeed that EUISP is not strongly
NP-hard. We perform computational experiments for both approaches.
Thanks to an upper bound which can be quickly computed, we show
that, at least on instances of moderate size, the list scheduling
algorithm provides good quality solutions for EUISP in a very limited
computation time.

The plan of the paper is as follows. In Section 2 we define the
problem and introduce the notation. In Section 3 we discuss the
relationship between EUISP and UJP, and establish some results
needed by the subsequent complexity analysis, carried out in Section
4. In Section 5, we propose an exact, dynamic-programming-based
solution algorithm and a heuristic algorithm. In Section 6 an upper
bound is presented, which is then used in the computational experi-
ments of Section 7 to assess the quality of heuristic solutions. Finally,
some conclusions are drawn.

2. Problem definition and notation

Let J J J= { ,…, }n1 and M M M= { ,…, }m1 be the sets of jobs and
machines, respectively, with J n| | = and M m| | = . To be carried out, a
job Jj requires a processing time pj on any machine. We suppose the
jobs numbered in SPT order, i.e., p p≤j k if j k< . Jobs cannot be
preempted. Machines are subject to unrecoverable interruptions. This
means that if a machine fails while processing a job, the work related to
that job and all subsequently scheduled jobs on that machine are lost
and cannot be accounted for. Here we consider the case in which, for
machineMi, the time between failures is exponentially distributed with
parameter λi, i.e., if Mi is up at a certain time, the probability that it is
still up after t time units is given by e λ t− i . In fact, thanks to the well-
known memoryless property of the exponential distribution, such
probability value does not depend on the time elapsed since the last
failure, but only on t. Hence, if machine Mi is up when starting job Jj,
the probability that it does not fail during the execution of Jj is given by
π e=j

λ p− i j. We call πj the success probability of job Jj. If a job Jj is
successfully processed by a machine, we achieve an amount of work
given by pj. The problem addressed in this paper, EUISP, consists in
allocating the jobs to the m machines and sequencing them on each
machine in such a way that the total expected amount of work done is
maximized.

In the following we use σ σ σ σ= { , ,…, }m1 2 to denote a schedule, i.e.,
an assignment of the n jobs to the m machines, along with a job
sequence σi for each machine Mi (i m= 1,…,). Given a subset of K jobs
assigned to a certain machine Mi, having failure parameter λi, and
given a sequence σi of such jobs, we denote by Jσ h()i the job in h-th
position on the machine. The expected amount of work done by
machine Mi, denoted as EAW σ[]i i , is given by:

∑

EAW σ p e p e

p e p e

[] = + +…

+ = .∑

i i σ
λ p

σ
λ p p

σ K
λ p p p

h

K

σ h
λ p

(1)
−

(2)
− (+)

()
− (+ +…)

=1
()

−

i
i σi i

i σi σi

i
i σi σi σi K

i
i j

h
σi j

(1) (1) (2)

(1) (2) () =1 ()

(1)

EUISP consists in finding σ such that

∑EAW σ EAW σ[] = []
i

m

i i
=1

is maximized. When referring to the problem with m machines, we
denote the problem as EUISP m(). When all m machines have identical
failure processes (i.e., λ λ=i for i m= 1,…,), we denote the problem as

mEUISP*(). Clearly, if m=1, we use indifferently EUISP(1) or
EUISP*(1).

3. Relationship with the unreliable job scheduling problem

In this section we show that EUISP*(m) is a special case of the
Unreliable Job scheduling Problem (UJP) [2]. In UJP(m), there are n
jobs that must be allocated and sequenced on m machines. No

processing times are specified, but for each job Jj there is a certain
success probability πj and a revenue rj. As in EUISP*(m), if a job fails,
the machine on which the job was allocated is blocked and all
subsequently scheduled jobs cannot be performed. When a set of K
jobs is sequenced according to a sequence σi on machine Mi, the
expected revenue z σ()i i for Mi is given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∏

z σ r π r π π r π π

π r π

() = + +⋯+ …

= = .

i i σ σ σ σ σ σ K σ σ

σ K
h

K

σ h
j

h

σ j

(1) (1) (2) (1) (2) () (1) (2)

()
=1

()
=1

()

i i i i i i i i

i i i
(2)

UJP(m) consists in allocating the jobs to the machines and
sequencing them so that the total expected revenue is maximized.
Notice that EUISP*(m) is a special case of UJP(m) in which rj=pj and
π e=j

λp− j. When m=1, UJP(1) can be efficiently solved by sequencing
the jobs in nonincreasing order of the following Z-ratio, originally
introduced by Mitten [9]:

Z
π r

π
=

1 −
.j

j j

j (3)

When referring to EUISP*(1), the ratio Zj becomes

Z
p e

e
=

1 −
.j

j
λp

λp

−

−

j

j (4)

Now, simple calculus shows that for any λ > 0, the function

f x xe
e

() =
1 −

λx

λx

−

− (5)

is monotonically decreasing in [0, +∞). As a consequence, if two jobs
J J,j k are such that p p<j k, then Z Z>j k and hence the following
theorem holds:

Theorem 3.1. EUISP(1) is solved by sequencing the jobs in
nondecreasing order of shortest processing time (SPT order).

As a consequence, in EUISP*(m), the problem concerns indeed the
allocation of the jobs to the machines, since the optimal sequencing on
each machine is then given by SPT. We next briefly recall the known
complexity results for UJP. In [2], a polynomial reduction of PRODUCT

PARTITION to UJP(2) is presented. We note here that since PRODUCT

PARTITION was shown to be strongly NP-hard by Ng et al. [8], so is
UJP(m) for any fixed m ≥ 2.

Heuristic approaches for UJP have been considered [1]. In parti-
cular, for many parallel-machine scheduling problems a viable ap-
proach is the List Scheduling Algorithm (LSA), which consists in
ordering all jobs in a list, and sequentially assigning them to the
machines according to a given criterion. A list scheduling algorithm for
UJP works as follows:

• Order the jobs by nonincreasing Zj;

• Assign the first not assigned job to the machine i having largest
cumulative probability Π i(), i.e., largest product of the πj of the jobs
already allocated to that machine.

Note that the complexity of LSA is essentially due to the job sorting
phase, i.e., O n n(log). For the case of m=2, it was proved [1] that LSA
provides a solution of value at least (2 + 2)/4 ≃ 0, 853 times the
optimal expected revenue for UJP. Notice that, in the case of EUISP*,
the Z-ordering coincides with the SPT-ordering, and the largest
cumulative probability indeed coincides with the smallest cumulative
processing time. Hence, LSA can be simplified as in Fig. Fig. 1, in which
we use Pi to denote the total processing time of the jobs currently
assigned to machine Mi. Recalling that the jobs are numbered in SPT
order, we note that in this case LSA coincides with the simple round
robin algorithm, consisting in allocating job Jk to machine Mu where
u k m= (mod), for all k n= 1,…, .

LSA can be modified to solve EUISP m(), i.e., when the failure

A. Agnetis et al. Computers & Operations Research 79 (2017) 109–118

110

https://isiarticles.com/article/105660

