
Journal of Systems Architecture 76 (2017) 17–27 

Contents lists available at ScienceDirect 

Journal of Systems Architecture 

journal homepage: www.elsevier.com/locate/sysarc 

Priority-driven spatial resource sharing scheduling for embedded 

graphics processing units 

Yunji Kang, Woohyun Joo, Sungkil Lee, Dongkun Shin 

∗

Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea 

a r t i c l e i n f o 

Article history: 

Received 19 May 2016 

Revised 6 February 2017 

Accepted 19 April 2017 

Available online 26 April 2017 

Keywords: 

Embedded GPU 

GPU job scheduling 

Spatial resource sharing 

Resource reservation 

a b s t r a c t 

Many visual tasks in modern personal devices such smartphones resort heavily to graphics process- 

ing units (GPUs) for their fluent user experiences. Because most GPUs for embedded systems are non- 

preemptive by nature, it is important to schedule GPU resources efficiently across multiple GPU tasks. 

We present a novel spatial resource sharing (SRS) technique for GPU tasks, called a budget-reservation 

spatial resource sharing (BR-SRS) scheduling, which limits the number of GPU processing cores for a job 

based on the priority of the job. Such a priority-driven resource assignment can prevent a high-priority 

foreground GPU task from being delayed by background GPU tasks. The BR-SRS scheduler is invoked only 

twice at the arrival and completion of jobs, and thus, the scheduling overhead is minimized as well. We 

evaluated the performance of our scheduling scheme in an Android-based smartphone, and found that 

the proposed technique significantly improved the performance of high-priority tasks in comparison to 

the previous temporal budget-based multi-task scheduling. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Recent smart devices such as smartphones, smart TVs, and 

tablet PCs run many visual applications in parallel, which include 

graphical games, video players, web browsers, and rich graphical 

user interfaces (GUIs). For instance, a user can launch multiple GPU 

applications on the home screen, such as live wallpaper, widgets, 

and popup browsers. Another example is when a user video-chats 

with colleagues, while playing a graphical game. 

GPUs embedded within recent system-on-chips strongly facil- 

itate the execution of such visual tasks by exploiting multiple 

cores in parallel [1,2] . For example, ARM Mail-400 GPU has one 

geometry processor (GP) and four pixel processors (PPs) [3] . The 

realm of GPUs further expanded beyond the traditional area of 

visual computing owing to unified shaders, which encompasses 

even computation-intensive workloads such as augmented reality, 

real-time object recognition, and deep learning [4–7] . For instance, 

Mali-T880 GPU is composed of 16 shader cores [8] . 

As the number of applications relying on GPUs grows rapidly, 

an efficient multi-task scheduling of GPUs is becoming increasingly 

important. Fluent user experiences across multiple visual tasks 

require the supports of priority-driven service, quality-of-service 

(QoS), and performance isolation. In particular, time-critical inter- 

∗ Corresponding author. 

E-mail address: dongkun@skku.edu (D. Shin). 

active foreground processes should be prioritized over background 

processes (e.g., live wallpapers). Nonetheless, the majority of cur- 

rent GPUs schedule them still on the basis of the first-come-first- 

service (FCFS) without considering priorities of GPU tasks. 

A priority-driven GPU scheduling algorithm was recently pro- 

posed to mitigate the problem for desktop GPUs, which allocates 

different time budgets to GPU tasks based on their priorities [9] . 

While effective in general, such an approach does not perfectly fit 

with embedded GPUs for several reasons. First, the non-preemptive 

nature of GPU tasks does not allow complete individual control of 

the time utilization for each task. Second, its timer interrupt han- 

dling additionally incurs non-negligible overhead in embedded sys- 

tems. Third, their scheduling algorithm assumes that a single task 

entirely uses a GPU at a time, but this is not true in recent GPUs; 

the currently available GPUs support a spatial multi-tasking to al- 

low for multiple GPU tasks to be executed in parallel at different 

GPU cores [3,8] , and there were many studies on the spatial multi- 

tasking of GPU [10–14] . These limitations motivated us to explore 

a better way to schedule multiple GPU tasks. 

This paper presents a spatial resource sharing (SRS) technique 

for non-preemptive sporadic GPU tasks, which schedules multi- 

ple GPU tasks at different GPU cores simultaneously. Our budget 

reservation-based spatial resource sharing (BR-SRS) scheduler re- 

serves a different number of processing cores for each task based 

on its priority. Unlike the previous time-based multi-tasking, BR- 

SRS can effectively deal with the non-preemptive nature of GPU 

jobs. In particular, the BR-SRS scheduler is invoked only twice 

http://dx.doi.org/10.1016/j.sysarc.2017.04.002 

1383-7621/© 2017 Published by Elsevier B.V. 

http://dx.doi.org/10.1016/j.sysarc.2017.04.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2017.04.002&domain=pdf
mailto:dongkun@skku.edu
http://dx.doi.org/10.1016/j.sysarc.2017.04.002


18 Y. Kang et al. / Journal of Systems Architecture 76 (2017) 17–27 

GPU

Session Scheduler

Application Application Application

Session
0

a2
a1
a0

Session
1

b5
b4
b3
b2
b1
b0

Session
2

c4
c3
c2
c1
c0

...
S2
S0
S1

BR-SRS Scheduler

Processor Processor Processor Processor

Resource Manager

Jo
b
Q
ue
ue

Session
Queue

Job

Session Pointer

User Level

OS Level

Device
Driver

HW
Resource

check
budget

a3 b6 c5

b0Job

Fig. 1. The architecture of a GPU device driver. 

at the job arrival and completion, and thus, the significant over- 

head of timer interrupt handling present in the time-based multi- 

tasking is avoided as well. In comparison to the previous spatial 

multi-tasking techniques, the BR-SRS scheduling can provide in- 

stant responsiveness to a user-interactive foreground graphics ap- 

plication in personal mobile devices. We implemented the BR-SRS 

scheduler with an Android-based smartphone device, and carried 

out experiments to assess its performance against the previous 

temporal budget-based multi-tasking algorithm. 

2. GPU processing model 

When a user implements graphical applications, a GPU library 

is generally used to efficiently communicate with GPU devices. One 

of the most common examples is OpenGL for Embedded Systems 

(OpenGL-ES). Such a library interacts with GPUs and provides an 

abstract interface, which allows a user to write a graphical appli- 

cation without deeply figuring out the underlying architecture of 

the GPU. Functions invoked by the GPU library generate a series of 

commands, and enqueue them into the GPU job queue. Then, GPU 

device driver sends the jobs to the GPU device to perform them in 

a row. 

Since multiple applications can simultaneously use the GPU de- 

vices, the device driver should schedule GPU jobs based on fair- 

ness or priorities among applications. When a GPU job starts in the 

GPU, it cannot be preempted, in general, until the job is completed; 

recently, there have been several studies to tackle the preemptive 

scheduling of GPU jobs, which will be reviewed in Section 3 . Since 

a GPU is composed of multiple processing cores, one GPU job can 

use multiple processing cores, or multiple jobs can be simultane- 

ously scheduled at different cores in the GPU. 

Fig. 1 shows the overall architecture of a GPU device driver and 

its job scheduling. The device driver contains sessions, a session 

scheduler, and a resource manager. A session is a data structure 

to manage the job queue of a user application. Each session is al- 

located for each application, inheriting the priority of its applica- 

tion. The session scheduler selects the session to be scheduled and 

sends a GPU job from the session to the GPU device, when there 

are available GPU resources. The session scheduler considers the 

priorities of different sessions, and thus, a low-priority session can 

be scheduled only when there are no jobs in higher-priority ses- 

sions. However, within a single application, the jobs need to be 

sent in the order they were enqueued, and therefore, the scheduler 

dispatches the oldest job from the job queue without reordering. 

The resource manager controls the state of each processing core. If 

a job is completed by the GPU or a new job is inserted into a job 

queue, the session scheduler dispatches a new job from a session 

queue. The GPU has multiple homogeneous processing cores, and 

several GPU jobs can be processed by multiple processing cores in 

parallel. 

In this paper, our BR-SRS scheduler focuses on how to improve 

GPU job scheduling in the session scheduler. It manages the re- 

source budgets of GPU tasks. The initial budget values are assigned 

based on the priorities of GPU tasks. A GPU task is not allowed to 

use more resources than its resource budget. The BR-SRS scheduler 

will then examine the next GPU task in the session queue. 

Generally, only one foreground GPU application interacts with 

the user at a time in a smarthpone whereas there can be many 

background GPU applications. The performance of a foreground ap- 

plication should not be delayed by background applications. There- 

fore, we can divide GPU applications into two groups, i.e., high- 

priority group and low-priority group. If a GPU application runs in 

foreground, it is categorized into the high-priority group. However, 

if another foreground application is launched and the previous ap- 

plication is changed to a background application, the background 

application is moved into the low-priority group. The Android’s 

graphics architecture uses the SurfaceFlinger to draw graphic win- 

dows at display unit, which accepts buffers of graphical data from 

multiple applications, makes a composite of them, and sends it to 

the display [15] . The SurfaceFlinger is a separate process isolated 

from user applications, and it also uses the GPU. Because the Sur- 

faceFlinger is responsible for making the final frame buffer image 

to be displayed, it also should be categorized as a high-priority 

task in addition to the foreground application. 

3. Related work 

3.1. Temporal budget reservation 

TimeGraph [9] is a priority-driven GPU job scheduler that uses 

the temporal budget reservation (TBR) technique. The TBR sched- 

uler assigns different time budgets to GPU tasks with different pri- 

orities. Each task can utilize GPU resources only when its time 

budget and resources are available. The time budget is replenished 

periodically. The TBR scheduler uses two resource reservation poli- 

cies: posterior enforcement (PE) and a priori enforcement (AE). 

While the PE policy enforces GPU resource usage once a GPU task 

is completed, the AE policy predictively enforces GPU resource us- 

age before a GPU task is submitted based on the predicted task 

execution time. 

In order to manage the temporal budget, the TBR scheduler de- 

mands the timer interrupt service, which results in interrupt han- 

dling and context switching overheads. Moreover, the TBR with PE 

policy cannot prevent the overrun of low-priority tasks due to the 

non-preemptive nature of GPU processing. Therefore, the process- 

ing of a higher-priority task may be delayed by a lower-priority 

task if the lower-priority task arrives before the higher-priority 

task and holds all the GPU resources. 

The TBR with AE policy can alleviate such a problem by pre- 

dicting the execution times of GPU tasks based on profiling. It pre- 

vents a GPU task from being scheduled if the remaining temporal 

budget is smaller than the expected execution time. Since the GPU 

task generates dynamically variable workloads of GPU jobs, it is 

not sufficient to predict the execution time based only on the task 

identification. Therefore, the AE technique predicts the execution 

time using the command sequences of GPU jobs. Such a predic- 

tion technique requires a considerable amount of CPU and memory 

overhead, and thus, is not applicable to mobile devices. In addition, 



https://isiarticles.com/article/105675

