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a b s t r a c t

Iterative learningmodel predictive control (ILMPC) is a technique that combines iterative learning control
(ILC) and model predictive control (MPC). The objective is to track a reference trajectory of repetitive
processes on a finite time interval while rejecting real-time disturbances. In many repetitive processes,
the output is not required to track all the points of a reference trajectory. In this study, we propose
a point-to-point ILMPC (PTP ILMPC) technique considering only the desired reference points, and not
an entire reference trajectory. In this method, an arbitrary reference trajectory passing through the
desired reference values need not be generated. Numerical examples are provided to demonstrate the
performances of the suggested approach in terms of PTP tracking, iterative learning, constraint handling,
and real-time disturbance rejection.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Iterative learning control (ILC) is an effective technique for
controlling repetitive, cyclic, batch, or iterative processes wherein
the same task is repeated for a finite time interval. ILC can achieve
iteration-wise asymptotic convergence along the iteration axis
under model uncertainty and iteration-invariant disturbances by
learning from previous iterations. The technique was originally in-
troduced for robotmanipulators (Arimoto, Kawamura, &Miyazaki,
1984) and has since been applied to many industrial processes
(Ahn, Chen, & Moore, 2007). Because the conventional ILC law is
updated using the error obtained in the previous iteration, the
controller is said to be in an open-loop configuration, and thus,
cannot be used to reject real-time disturbances.

Several studies have been conducted to incorporate a feedback
controller in ILC. An ILC using current cycle feedback (CCF) was
proposed to combine ILC with the conventional feedback control
wherein the error obtained in the current cycle is simply added
to the conventional ILC algorithm (Hashimoto, Xu, Kang, & Ha-
rashima, 1987; Xu, Wang, & Heng, 1995). Amann et al. proposed a
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norm-optimal ILC based on an optimization problem wherein the
norm of the tracking error is minimized (Amann, Owens, & Rogers,
1996). Several closed-loop ILCmethods based on two-dimensional
(2D) systems have been proposed for robust tracking of a set-
point profile against uncertainties and real-time disturbances (Liu,
Gao, & Wang, 2010; Liu & Wang, 2012). Recently, ILC methods
combined with model predictive control (MPC), called iterative
learning model predictive control (ILMPC), have attracted much
attention because of their applicability for complex constrained
multivariable control problems observed in process industries
(Lee, Chin, Lee, & Lee, 1999; Oh & Lee, 2016; Wang, Zhou, & Gao,
2008). A major drawback of applying MPC to iterative processes
is that it cannot track an entire reference trajectory under model-
plant mismatch and shows identical tracking performance for all
iterations because it does not use the information, e.g., tracking
errors, inputs, and outputs of previous runs. The main objective
of the ILC method, along with the feedback controller, is to track
an entire reference trajectory at all time steps while rejecting real-
time disturbances.

However, it is not necessary for the output to track an entire ref-
erence trajectory in many applications such as robotic ‘‘pick-and-
place’’ tasks, crane control, rapid thermal processes, and chemical
batch reactors (Freeman & Tan, 2013; Xu, Chen, Lee, & Yamamoto,
1999). The errors only at particular points are critical. Several ILC
techniques have been developed to solve the point-to-point (PTP)
tracking problemwithout generating an arbitrary reference trajec-
tory, which passes through the desired points. Terminal ILC (TILC)
is a control technique used to track only a terminal target point
(Chi, Wang, Hou, & Jin, 2012; Hou, Wang, Yin, & Tang, 2011). TILC
was first proposed for rapid thermal processing in chemical vapor
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decomposition system,wherein themain objective is to control the
terminal deposition thickness (Xu et al., 1999). However, in the
TILC techniques, only the terminal point is considered; thus, ILC
techniques that can consider multiple points, called PTP ILC, have
been proposed. Freeman, Cai, Rogers, and Lewin (2011) proposed
a PTP ILC approach wherein the reference trajectory is updated be-
tween iterations. Unlike the reference-trajectory update method,
several PTP ILC techniques were proposed without updating ref-
erence trajectory (Chu, Freeman, & Owens, 2015; Freeman & Tan,
2013; Son, Ahn, & Moore, 2013). Whereas these methods can
handle constraints, they do not contain the feedback mechanism
within an iteration and thus cannot reject real-time disturbance.
Unlike the general tracking problems, the PTP tracking problems
have output errors only at the desired points. Thus, a conventional
feedback controller cannot be combined with PTP ILC because
the conventional feedback controller requires output feedback at
every time step. In addition, combining PTP ILC with the real-time
feedback control necessitates state feedback at each time step for
minimizing the output errors at future reference points.

The main objective of this study is to propose a framework that
can accomplish both the asymptotic PTP tracking along the itera-
tion axis and real-time disturbance rejection along the time axis.
For the real-time feedback control of the PTP tracking problem,
we propose a PTP ILC method combined with MPC, called point-
to-point iterative learning model predictive control (PTP ILMPC).
In the proposed PTP ILMPC, the state variables of each time step
are employed as feedback signals and only the output errors of
future reference points are minimized. Thus, the method only
requires desired reference points without a reference trajectory,
which is often arbitrarily designed to pass through the desired
reference points. Furthermore, the proposed PTP ILMPC algorithm
can reject real-time disturbances via the feedback mechanism and
can consider both input and output constraints. Output constraints
are implemented as soft constraints by adding a slack variable to
the constraints to avoid infeasibility and potential conflict between
input and output constraints. To ensure the convergence of track-
ing error, the suggested approach requires that the errors between
themeasured and estimated outputs tend to zero for all timepoints
as the number of iterations tends to infinity. However, neither the
classical observer nor the Kalman filter can be used to ensure that
the estimation error converges to zero for all time steps. To over-
come this issue, iterative learning observer (ILO) is incorporated
into the algorithm, thus ensuring that the estimation error tends to
zero for all time steps as the number of iterations tends to infinity
(Hätönen&Moore, 2007). The nominal stability and robustness are
analyzed in this study. In Section 5.1, a comparison between the
proposed technique and the existing PTP ILC (Son et al., 2013) is
presented.

The rest of this paper is organized as follows: In Section 2, the
prediction model is derived using the double-incremental model.
Section 3 introduces the extraction matrix and presents the main
algorithm of the PTP ILMPC including ILO. Section 4 presents three
results of the convergence analysis. The first result is the nominal
stability of the input sequences, and subsequently, a robust con-
vergence condition is provided. Finally, we show the convergence
of the error. In Section 5, numerical illustrations are provided for
a single-input single-output (SISO) linear system and a multiple-
inputmultiple-output (MIMO) nonlinear process. Finally, conclud-
ing remarks are provided in Section 6.

2. Problem formulation

We consider the linear discrete time-invariant system which
operates on an interval t ∈ [0, N]:

x̄k(t + 1) = Āx̄k(t) + B̄uk(t), yk(t) = C̄ x̄k(t) (1)

where t is the time index; k is the iteration or batch index; x̄k(t) ∈

Rnx ; uk(t) ∈ Rnu ; yk(t) ∈ Rny ; Ā, B̄, and C̄ are matrices of ap-
propriate dimensions. The state–space model is augmented using
yk(t + 1) = C̄ Āδx̄k(t) + yk(t) + C̄ B̄δuk(t) where δ is the time-
increment operator, i.e., δx̄k(t) = x̄k(t) − x̄k(t − 1) and δuk(t) =

uk(t) − uk(t − 1).

[
δx̄k(t + 1)
yk(t + 1)

]
=

A  [
Ā 0
C̄ Ā I

] xk(t)  [
δx̄k(t)
yk(t)

]
+

B  [
B̄
C̄ B̄

]
δuk(t)

yk(t) =
[
0 I
]  

C

[
δx̄k(t)
yk(t)

]
.

(2)

To define a new state vector, the incremental model takes the
following general form:

xk(t + 1) = Axk(t) + Bδuk(t), yk(t) = Cxk(t). (3)

Eq. (3) is referred to as an incremental state–space model or lin-
ear velocity-form model (Wang, 2004). A well-posed optimization
problem with the velocity-form model ensures that the offset can
be eliminated, which is defined as the steady state error between
the controlled outputs and the desired set-points (Betti, Farina, &
Scattolini, 2013). The offset-free tracking is necessary to reject real-
timedisturbances. Subsequently, system (3) canbe rewritten in the
form of the following iteration incremental model using the batch-
increment operator∆.

∆xk(t + 1) = A∆xk(t) + B∆δuk(t), ∆yk(t) = C∆xk(t) (4)

where ∆xk(t) = xk(t) − xk−1(t), ∆yk(t) = yk(t) − yk−1(t), and
∆δuk(t) = δuk(t) − δuk−1(t). The prediction model for general
ILMPC can be represented using the double-incremental model (4)
as follows:

ŷpk(t + 1|t) = ypk−1(t + 1) + G∆δum
k (t) + F∆x̂k(t|t) (5)

G ≜

⎡⎢⎢⎣
CB 0 · · · 0
CAB CB · · · 0
...

...
. . .

...

CAp−1B CAp−2B · · · CAp−mB

⎤⎥⎥⎦ , F ≜

⎡⎢⎢⎣
CA
CA2

...

CAp

⎤⎥⎥⎦ (6)

ŷpk(t + 1|t) ≜
[
ŷk(t + 1|t)T · · · ŷk(t + p|t)T

]T
∆δum

k (t) ≜
[
∆δuk(t)T · · · ∆δuk(t + m − 1)T

]T (7)

where p is the prediction horizon;m is the control horizon; ŷk(t +

1|t) denotes output estimates of yk(t+1) based on the information
available at time t of the kth iteration; ∆x̂k(t|t) denotes state
estimates. In case of ILMPC, the algorithm should have a reference
trajectory for all time t . The vector of reference trajectory for
ILMPC is defined as r ≜

[
r(1)T r(2)T · · · r(N)T

]T , and rp(t) ≜[
r(t)T r(t + 1)T · · · r(t + p)T

]T .
In the ILMPC algorithm, the prediction and control horizons

should not exceed remaining time points. Thus, we introduce the
concept of shrinking horizons (Joseph & Hanratty, 1993), and the
horizons are updated as

p =

{
p0 , if p0 ≤ N − t
N − t , otherwise

m =

{
m0 , if m0 ≤ N − t
N − t , otherwise

(8)

where p0 and m0 are the initial prediction horizon and initial
control horizon, respectively.
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