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Abstract: This paper addresses the error convergence rate of data-driven iterative learning
control (ILC) for single-input-single-output (SISO) systems. Since the error convergence rate
depends on the learning filter, which ideally should invert the plant dynamics, the challenge lies
in creating the ILC learning filters that approximate the plant inverse without having the plant
model. Zero-phase or time-reversal filtering ILC is applied to track smoothened impulse, where
the learning filter is progressively updated while trajectory learning proceeds. The approach
drastically accelerates the error convergence rate of the time-reversal based ILC. The progression
of the ILC learning filter brings an additional degree of freedom for the learning filter design
with proven stability properties. Simulation results for tracking a chirp reference on a linear
motor positioning system demonstrate the effectiveness of the approach.
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1. INTRODUCTION

Iterative learning control (ILC), which iteratively updates
control inputs, has been shown to achieve excellent track-
ing performance for applications that execute the same
task multiple times [Bristow et al. (2006)]. Because the
reference trajectory remains unchanged from one iteration
to the next, the error information from the previous runs
are used to anticipate the control signals and therefore
high-performance tracking is enabled once converged. Af-
ter decades of development, ILC has been applied to vari-
ous industrial applications, such as Computer-Numerical-
Control machining [Krishnamoorthy and Tsao (2004)],
wafer stage motion systems [Barton and Alleyne (2008)],
robotics [Tayebi (2004); Wallen et al. (2011)], the pulsed
linear accelerators in the free electron laser [Rezaeizadeh
and Schilcher (2008); Kirchhoff et al. (2008)], and chemical
processing [Chin et al. (2004)].

The stability and error convergence rate of ILC algo-
rithms rely on the selection of learning filter. Model-based
approaches use numerical optimization [Gunnarsson and
Norrlöf (2001)] or non-minimum phase plant inversion
technologies, such as zero-phase-error tracking controller
(ZPETC) [Tomizuka (1987)], zero-magnitude-error track-
ing controller (ZMETC) [Rigney et al. (2009)], and direct
inversion [Chang and Tsao (2014)], to come up with the
learning filter that meets the stability criteria and pro-
vides fast error convergence. Excluding the effect of model
uncertainty, data-driven ILC is popular when an accurate
dynamic model is not available. Time-reversal phase can-
cellation [Gustafsson (1996); Ye and Wang (2005); Bolder
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and Oomen (2015)] ensures the stability of iterative pro-
cess by assigning the adjoint system with a sufficiently
small learning gain as the learning filter. This conservative
updating, however, results in slow error convergence and
makes itself less practical for applications.

To improve convergence rate of data-driven ILC algo-
rithms, a progressive approach is proposed to learn and
update the learning filter. Inspired by the findings that
dynamic inversion can be reconstructed by any stable ILC
algorithm [Chen and Tsao (2016)], we initialize from a
small learning gain and then use the underconstructed
inversion to update the learning filter for next progression.
While proceeding this progressive evolution, the dynamic
inversion is gradually reconstructed and provides much
faster ILC convergence rate than the origin. This approach
reveals another degree of freedom for ILC algorithms. For
any stable ILC, iteration of updating input signals brings
smaller tracking error, while progression of learning filter
improves error convergence rate.

The remainder of the paper is organized as follows: the
problem definition and theoretical background are given in
Section 2; the progression of ILC algorithm is proposed in
Section 3; Section 4 demonstrates the simulation results on
a high-order linear motor model; the concluding remarks
are given in Section 5.

2. PROBLEM DEFINITION AND PRELIMINARIES

2.1 Iterative Learning Control (ILC)

For any stable single-input-single-output (SISO) discrete-
time systems G, a generic ILC updating law can be
expressed as

uj+1 = uj + F
ILC

(z) (r − yj) (1)
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where j indicates the iteration number, r is the tracking
reference with length of N , u stands for the control input,
and y is the output of the plant G. F

ILC
, also denoted

as learning filter, determines the stability of the iterative
process and the error convergence rate.

To clarify, the capital letters (e.g. G, F
ILC

) in the rest of
this paper are the frequency-domain representation of the
dynamics; the capital letters followed by the symbol (z)
represent their filter form in z-domain; lower case letters
(e.g. r, y) denote either time-domain vectors or the impulse
responses of the corresponding dynamics.

Assumption 1. The finite time window length N is suffi-
ciently large so that it covers the reference trajectory and
the impulse response of the plant dynamics with sufficient
number of zero padded on both ends. This assumption
makes it possible to use the Z-transform of the signals and
systems to represent and analyze the ILC operations in
time and frequency domain.

After exploiting the iterative structure, the control input
u at the j-th iteration can be rewritten as

uj = [1− (1− F
ILC

(z)G(z))j ]G−1(z)r (2)

Note, the G−1 term in Eq. 2 is algebraically canceled after
multiplying the [1−(1−F

ILC
(z)G(z))j ] term. Therefore, uj

is bounded and stable even if G has non-minimum phase
zeros. The corresponding tracking error at j-th iteration
is

ej = [1− F
ILC

(z)G(z)]jr (3)

Stability and gradient of ILC has been well-documented
[Bristow et al. (2006)]. Particularly, [Norrlöf and Gun-
narsson (2002)] has proven that Eq. 2 and Eq. 3 are
asymptotically stable iff

|1− FILC
G|∞ < 1 (4)

Remark 1. (Error convergence rate). Eq. 4 not only spec-
ifies the stability by using the selected learning filter F

ILC
,

but also implies how fast the tracking error converges.
When F

ILC
perfectly models the dynamic inversion of G,

the convergence can be achieved within a single iteration.
On the other hand, if the magnitude of F

ILC
approximates

to or equals zero, the tracking error is slowly decreased or
even not improved.

2.2 ILC-based Feedforward Filter (ILCFF)

An interesting findings in [Chen and Tsao (2016)] mo-
tivates the proposed progression of ILC. It is reported
that dynamic inversion can be reconstructed from any
stable ILC algorithm, either model-based or data-based,
by learning a filtered delta function. After the control input
u converges and the error between the output y and the
targeted impulse m is less than the error tolerance ε, the
learned input signal u is used to represent the impulse
response of the dynamic inversion F , such that

GF = GU = Y

= M + E ∼= M
(5)

Note, M is the frequency domain representation of the
filtered impulse m and forms a zero-phase low-pass filter

M(z) = H(z)H(z−1) (6)

where H(z) could be an arbitrary low-pass filter.

Assumption 2. The zero-phase low-pass filter M(z) does
not have zeros on unity circle. Therefore M−1(z) exists.

The analysis and performance of the reconstructed inverse
filter have already been studied in [Chen and Tsao (2016)]
therefore they are ignored here to save space. Most impor-
tantly, the reconstructed dynamic inversion can be directly
used as a feedforward filter, which is preferable when the
tracking reference r is changing and therefore ILC can not
be applied.

Inspired by the excellent feedforward tracking performance
done by the reconstructed inverse filter, we were thinking
the possibility to first use a data-based ILC algorithm
to reconstruct a dynamic inversion, and then plug the
reconstructed inversion back into the generic ILC as the
learning filter to improve the performance of the initial
ILC algorithm. As a result, a decent data-based ILC algo-
rithm can be formulated without any a priori knowledge
regarding the plant dynamics.

2.3 Time-Reversal Phase cancellation

To enable the reconstruction of inverse filter, [Chen and
Tsao (2016)] used the model-based ZPETC [Tomizuka
(1987)] as the learning filter in the generic ILC. Applying
the adjoint system, ZPETC was used to stabilize repetitive
controller [Tsao and Chew (1989)] and was shown could
be used as the learning filter for ILC algorithm [Longman
(2000)]. The convergence and robustness properties of
adjoint operator were studied in the norm optimal ILC
[Kinosita et al. (2002); Ratcliffe et al. (2008); Owens et al.
(2009)], where a precise plant model is applied.

For model-free ILC design, time-reversal technique was
proposed to realize the adjoint operator [Gustafsson
(1996); Ye and Wang (2005)]. This approach was later
extended to handle point-to-point tracking [Potsaid and
Wen (2004)], non-minimum phase plants [Freeman et al.
(2007)], stochastic disturbance [Butcher et al. (2008)], and
multivariable systems [Bolder and Oomen (2015)].

Definition 2. (Time-reversal operator). A time reversal op-
erator R which flips a sequence of signal is defined as an
N -by-N involutory permutation matrix such that

y∗(i) = y(N − i) = Ry(i) (7)

Definition 3. (Adjoint system). G∗, with an input y and
an output w, is the adjoint system of the SISO plant G
where

w(i) = G∗(z)y(i) = RG(z)Ry(i) (8)

BecauseG∗G forms a system with positive magnitudes and
zero phase angles, G∗ can stabilize the model-free iterative
process after scaled by a constant learning gain α:

FILC(z) = αG∗(z) (9)

When α is sufficiently small, the stability criteria of Eq. 4
is met and therefore the stability of the time-reversal based
ILC is guaranteed. However, small α results in conservative
updating and thus slows down the error convergence rate.
To improve, a data-driven progressive method is proposed
to update the conservative learning filter and dynamic
inversion, such that a faster convergence rate can be
evolved.

3. PROGRESSION OF ILC

The formulation of the proposed progressive algorithm
is presented in this section. To clarify, the index of the
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Fig. 1. Block diagram of the proposed ILC progression.

number of inverse filter progression is defined as k, the
number of iteration in each progression of ILC is referred
as j, n indicates the maximal iteration number j for each
progression, and finally i stands for the discrete-time index
for sequences involved in the ILC such as r, y, w, and u.

The main idea of the proposed algorithm is to progressively
learn and update the learning filter FILC aside from the
nominal ILC, such that faster convergence is enabled. By
abuse of terminology, we call this “progression” of ILC.
The progression could be proceeded just once before ap-
plying the nominal ILC to arbitrary trajectory tracking. In
other words, the generic ILC structure remains the same
and only the learning filter FILC is improved.

Method 1. (Progression of ILC learning filter). As shown
in Fig. 1, the ILC progression is achieved by performing
augmented ILC on the series of the controlled plant G
and its adjoint system G∗, with input u and output w. G∗

is realized by time-reversal technique and the augmented
ILC update law is rewritten as:

uj+1 = uj + L<k>(z) (r − wj) (10)

L<k> is the learning filter of this augmented structure
in the k-th progression. At each progression, the initial
control input u0(i) is reset and the augmented structure is
then used to learn the input signal uj+1(i) which generates
a filtered delta function m, i.e. r(i) = m(i), similar to the
way to reconstruct the inverse filter presented in Section
2.3. After running n iterations (j = n), the learning filter L
is then progressively updated as an FIR filter with impulse
response equals un(i),

L<k+1> ≡ Uj |j=n (11)

the progressively reconstructed dynamic inversion F<k>

is also updated as

F<k+1> ≡ Y ∗
j |j=n (12)

which can be used as the learning filter for the nominal
ILC applied to the plant G, with faster convergence while
k becomes larger. �

Method 1 illustrates the ILC progression for the learning
filter (L<k+1> for the augmented system G∗G) and dy-
namic inversion (F<k+1> for the nominal system G). At
the initial progression, i.e. k=1 (denoted as Prog. 1), the
learning filter of the augmented ILC is selected to be a
sufficiently small learning gain α (denoted as L<1>) to
meet the stability criteria, |1 − L<1>G∗G|∞ < 1. After
n iterations, the error slightly decreased (contributed by
the conservative learning gain α), and the input u(i) and
output y(i) at the n-th iteration are used to construct the
learning filter L<2> and the dynamic inversion F<2> by
applying Eq. 11 and 12, respectively. The same process is
repeated until w(i) converges to m(i). As will be proven in
the following theorems, L<k+1> and F<k+1> approximate
to the dynamic inversions of G∗G and G once converged.

This suggests that the ILC error convergence rate is accel-
erated after progressions according to Remark 1.

Theorem 4. (Stability in ILC progression). The augmented
ILC of each progression (applied to G∗G as defined in
Method 1) is asymptotically stable if the stability criteria
is met in the initial progression (Prog. 1). In other words,

|1−L<k+1>G∗G|∞ < 1 if |1−L<k>G∗G|∞ < 1 (13)

Proof. For the k-th progression, the control input of
Eq. 10 after n iterations of error updating is

uj |j=n = [1− (1− L<k>(z)G∗(z)G(z))n](G∗(z)G(z))−1m
(14)

Therefore,

L<k+1> = Uj |j=n = [1− (1− L<k>G∗G)n](G∗G)−1M
(15)

|1− L<k+1>M−1G∗G|∞ = |1− [I − (I − L<k>G∗G)n]|∞
= |(1− L<k>G∗G)n|∞ < 1

(16)

Eq. 16 implies (L<k+1>M−1G∗G) is inside the unit circle
around 1. Since M is a zero-phase low pass, |M |∞ ≤ 1,

|1− L<k+1>G∗G|∞ = |1−M(L<k+1>M−1G∗G)|∞
< 1

(17)

Note that |1− L<k+1>G∗G|∞ ≤ |(1− L<k>G∗G)n|∞ < 1
at the pass band ofM according to Eq. 16. This implies the
convergence rate is exponentially improved by L<k+1>.�

Remark 5. (Progressive inversion reconstruction).
The progressively updated F<k+1> approximates the dy-
namic inversion of G, i.e.,

GF<k+1> ∼= M (18)

When the tracking error for the filtered impulse m con-
verges, the output w of the adjoint system G∗ approxi-
mates the reference impulse m. Since m is a symmetric
sequence, w∗ also approximates m. Therefore,

GF<k+1> = GY ∗
j |j=n = W ∗

j |j=n
∼= M (19)

Corollary 6. (Stability of progressive ILC).
F<k+1> stabilizes the generic ILC algorithm on the plant
G, i.e.,

|1− F<k+1>G|∞ < 1 (20)

Proof.

F<k+1> = Y ∗
j |j=n = (GUj |j=n)

∗ = (GL<k+1>)∗ (21)

Noted that L<k+1>∗
equals L<k+1> since both of the

targeted low pass filter M and the augmented system G∗G
are zero phase at all frequencies. After applying Theorem
4,

|1− F<k+1>G|∞ = |1− L<k+1>G∗G|∞ < 1 (22)

�

Eq. 22 not only specifies the stability by using the pro-
gressive dynamic inversion F<k+1> as the learning filter
for the ILC on the nominal system G, but also implies the
improvement of error convergence rate. Since the magni-
tude of (1−F<k>G) is the n-th order root of the magnitude
of (1−F<k+1>G) at the pass band of M , F<k+1> provides
faster convergence than F<k>.
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