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Abstract: This paper focuses on tracking spatially repeatable tasks. In addition, these tasks
are not necessarily temporally repeatable in the sense that the finite length of the corresponding
time interval may change with each repetition. Because of that, the standard Iterative Learning
Control (ILC) framework is not directly applicable. Namely, the standing assumption that the
finite length of the time interval is fixed with each repetition, is violated. Motivated by human
motor learning, this paper proposes a Spatial ILC (SILC) framework which leverages the spatial
repeatability. In particular, the concept of spatial projection, closely related to temporal rescaling,
is proposed. This allows to spatially relate the relevant information from the past repetition to
the present repetition. To demonstrate the proposed framework, a class of nonlinear time-varying
systems with relative degree zero is selected. In particular, using contraction mapping technique,
it is shown that under appropriate assumptions, the corresponding tracking error converges
under the proposed SILC control law. Finally, simulation results support the obtained result.
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1. INTRODUCTION

Iterative Learning Control (ILC) is a control paradigm
which focuses on problems which involve tasks that re-
peat. One classical example is the problem of packaging
assembly line which includes several repeatable tasks per-
formed by a robot, such as placing products in a box
and sticking labels on it. After first defining a desirable
way of performing each task, the goal of ILC is then
to improve the corresponding transient behavior and to
achieve perfect tracking. This is done by exploiting task
repeatability through application of an appropriate learn-
ing mechanism. Knowledge that is acquired via learning
enables the construction of a control law which effectively
and efficiently 1 accomplishes the transient and tracking
goals. Vast literature associated with ILC exists and it
spans both, the theory and the practice; e.g., cf.: survey
papers Ahn et al. (2007); Wang et al. (2009); Xu (2011),
books Xu and Tan (2003); Bien and Xu (2012); Moore
(1993) and references therein.

Indeed, ILC has been successfully applied to various prob-
lems involving repeatable tasks, as documented in the
literature above. However, it is important to notice that
each repeatable task satisfies the ILC standing assump-
tion. Namely, the finite length of the time interval over
which the task evolves is fixed for each repetition. Un-
fortunately, there are many problems where repeatable
tasks do not satisfy this assumption, rendering standard
ILC inapplicable. To illustrate this consider a repeatable

1 Other control methodologies can be used to solve this problem.
However, in most cases they do not fully exploit the repeatability
feature, and thus result in a less efficient and effective control laws.

task which consists of tracking a straight line of finite
length from a point A to a point B; in a two dimensional
space. Indeed, there are (many) examples where this task
can be performed within the fixed finite time interval at
each repetition; e.g., many industrial robots are capable
of performing such a task. However, for certain problems
such as the rehabilitation process, this assumption can-
not be satisfied; Shmuelof et al. (2012) demonstrates this
observation in a similar setup even for healthy subjects.
For instance, consider stroke rehabilitation. To recover,
during each session, a patient performs the same task
(movement) sufficiently many times. Now, imagine that
the rehabilitation process includes tracking the straight
line mentioned above without any robotic assistance. It is
unreasonable to expect that at each repetition, the patient
will execute this task (movement) in a fixed finite time
interval. Depending on the injury related factors, such
as pain, range of motion, motivation, focus, fatigue, and
the stage of the rehabilitation, it is very likely that the
duration of the time interval will vary with each repetition.
Indeed, it is natural to expect that over sufficiently many
repetitions the duration of the time interval will converge
to some value. Hence, for repeatable tasks which have its
spatial constituent fixed while its temporal constituent
variable, the standing assumption needs to be relaxed in
order to leverage the existing ILC results. A natural relax-
ation is to consider bounded instead of fixed time intervals;
notice that fixed time intervals are always bounded. This
relaxation enables one to formulate problems so that the
focus is on the spatial component in the corresponding ILC
analysis and design.
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Related industrial research on Spatial ILC (SILC) is
largely driven with particular industrial problems. For
instance, these include switched reluctance motors Sa-
hoo et al. (2007), nonlinear rotary systems Yang and
Chen (2009) and micro-additive manufacturing Hoelzle
and Barton (2014). Some theoretical results can be found
in Janssens et al. (2013) and Moore et al. (2007). The
former reference deals with the problem of minimization of
the total tracking error of the repeated tasks with output
constraints. On the other hand, the latter reference ex-
plores the freedom of not specifying temporal information
related to the spatial movement and shows some signifi-
cant practical yields. Neither reference provides a general
analysis and design framework though.

This paper aims to address this need for a class of
nonlinear time-varying systems with relative degree zero.
Towards that goal, first a framework that focuses on the
spatial aspect of the corresponding task is proposed. At
the core of the proposed framework is the concept of
spatial projection which is closely related to appropriate
temporal rescaling. To the best of authors’ knowledge the
only reference that utilizes a similar idea in the ILC
setting is reported in Kawamura and Sakagami (2002).
Namely, in Kawamura and Sakagami (2002), ILC and
time-scale transformation are used to identify added mass,
drag and buoyancy in the dynamics of the underwater
robots. The considered application is very specific and
moreover, no general analysis and design framework is
provided. In the present paper, after the introduction of
the spatial projection, the corresponding SILC controller
is proposed. The conducted convergence analysis exploits
the contraction mapping idea, cf.: Xu and Tan (2003). It is
shown that under the standard ILC assumptions (akin to
those in (Xu and Tan, 2003, Chapter 2)) for the considered
class of systems and the appropriate assumptions related
to the spatial projection, spatial tracking is achieved.
Finally, simulation results demonstrate the convergence,
even under disturbances due to computer implementation.

The paper is organized as follows. In the sequel, first the
mathematical preliminaries and notational conventions are
provided which is followed with the formulation of the
problem in Section 2. Then, in Section 3, the corresponding
assumptions are provided and main results are stated. This
is followed with Section 4, in which the simulations results
demonstrate the claims of the main results. Finally, in
Section 5, the concluding remarks are documented.

Preliminaries: Symbols Z and R, respectively, denote the
set of integer and real numbers. A set D ∈ {Z,R} which
elements are �-bounded, � ∈ {≤, <,>,≥}, by an element
a ∈ D, is denoted with D�a := {x ∈ D : x � a}. The
set of natural numbers is then defined as N := Z>0

while N0 := Z≥0. The Cartesian product between sets
Dj , j ∈ {1, . . . , d}, d ∈ N, is denoted as D1 × · · · × Dd.
However, when Dj = D, ∀j ∈ {1, . . . , d}, d ∈ N, the
shorthand notation Dd is used. Its elements are denoted
as ordered d-tuples, i.e., (x1, . . . , xd) where xj ∈ D, ∀j ∈
{1, . . . , d}, d ∈ N, and throughout the document, wherever
applicable, this notation is used to denote column vectors.
Several norms are used throughout the document. First,
‖x‖qq :=

∑n
j=1 |xj |q, (q, n) ∈ [1,∞)×N, where | · | denotes

the standard Euclidean norm. In addition, for a given

[0,T] �→ x(t) ∈ Rn, T > 0, its the supremum norm
is defined as ‖x‖s := maxt∈[0,T] ‖x(t)‖1, while its time-

weighted norm is defined as ‖x‖λ := maxt∈[0,T] e
−λ·t ·

‖x(t)‖1, where λ > 0.

2. PROBLEM FORMULATION

For the sake of clear problem formulation, first, a generic
nonlinear time-varying system with relative degree zero,
within the context of a traditional ILC framework, is
considered; e.g., cf. Xu and Tan (2003). The follow up
discussion then illustrates why such approach is not nec-
essarily applicable for spatially repeatable tasks. Then, a
spatial projection mapping is defined and an example of
how this concept might be useful in characterizing these
tasks is provided. Finally, using the concept of the spatial
projection, the problem formulation is provided.

So, consider the following system, evolving over a two
dimensional temporal space 2

ẋ(i, t) = f
(
t, x(i, t), u(i, t)

)
, (1a)

y(i, t) = h
(
t, x(i, t), u(i, t)

)
, (1b)

where, (
i, t

)
∈ N0 × [0,T], T ∈ R>0, (2)

is an element of a two dimensional temporal space. Vari-
ables x ∈ Bx ⊆ Rn, u ∈ Bu ⊆ Rm and y ∈ By ⊆ Rp,
respectively, are the system state, input and output, while
(n,m, p) ∈ N3. Further, respectively, f : R≥0 × Bx ×
Bu → Bx and h : R≥0×Bx×Bu → By, are the system state
and output mappings. Correspondingly, consider a model
of a desired behavior, ẋd(t) = f

(
t, xd(t), ud(t)

)
, yd(t) =

h
(
t, xd(t), ud(t)

)
, where xd ∈ Bxd

⊆ Rn, ud ∈ Bud
⊆ Rm

and yd ∈ Byd
⊆ Rp, respectively, are the desired behavior

state, input and output. Important to note is that only yd
is given and it is assumed that there exists ud; e.g., cf. (Xu
and Tan, 2003, Assumption 2.2, Chapter 2).

Now, a standard ILC objective is to construct an ILC
control law so that desired behavior is learned after suf-
ficiently many iterations. One way of explicitly capturing
this is by achieving limi→∞ ∆y(i, t) = (0, . . . , 0), where
∆y(i, t) = yd(t)−y(i, t). For a relative degree zero systems,
that satisfy standard ILC assumptions and some mild
smoothness conditions (cf. (Xu and Tan, 2003, Chapter
2)), the so-called P-type ILC control law that achieves this
limit is given as

u(i+ 1, t) = u(i, t) + κ ·∆y(i, t), (3)

where κ ∈ R is the learning control gain.

Remark 1. (Relative Degree). Note that dynamic systems
with arbitrary relative degree are addressed with different
types of ILC control laws. For instance, the so-called D-
type ILC control law can be used for dynamic systems
with relative degree one; cf. Ahn et al. (2007); Wang
et al. (2009); Xu (2011); Xu and Tan (2003); Bien and Xu
(2012); Moore (1993) and references therein for different
types of ILC control laws. �

Now, consider again the rehabilitation example mentioned
in Section 1. Namely, consider the example of a recovering
patient. As explained, during each treatment (session) a
patient repeats sufficiently many times a given movement
2 Notice that ẋ := dx/dt.
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in order to gradually recover. Recall that due to many
factors, there is no guarantee that each repetition of a
given movement is performed at the same rate and thus
within the same time interval. Traditional ILC approach,
succinctly introduced above, fails to address the problem
in the rehabilitation example because (2) is not satisfied.
Thus, one needs a more general framework which focuses
on the spatial information. There are different ways to
handle this. The approach pursued in this paper exploits
the concept of spatial projection mapping defined below.

Definition 1. (Spatial Projection). Consider s(t) ∈ Rl, l ∈
N, where t ∈ [0, T ], T > 0. Given ε > 0, a spatial
projection mapping is defined as, σε (s(t)) := s(ε ·τ) where
τ ∈

[
0, T

ε

]
. �

Remark 2. (Spatial Projection). Notice that the spatial
projection is obtained via temporal rescaling (rate ε) and
manipulation of the original time domain. The following
example provides more insight. �

Example 1. (Spatial Projection). To illustrate the appli-
cation of the spatial projection for the characterization
of spatially equivalent trajectories, consider the task of
drawing a straight line, of finite length, from a fictional
point A to the fictional point B; see Fig. 1. Instead of
using a dynamical model which captures this task, to sim-
plify the explanation consider just a static mapping. For
instance, each point on a straight line (from A to B) can
be defined as p(t) := exp(t). To capture the requirement
of drawing a line of finite length B − A, let t ∈ [0, T ]
where T > 0 is such that exp(T ) = B − A; note that
because t ∈ [0, T ], A = exp(0) = 1, however, this is not
that relevant for the narrative. In Fig. 1 this corresponds
to the green color. Let the corresponding line be a nominal
line. The nominal line is drawn with a corresponding rate
and it takes T amount of time to finish drawing it. Now,

A

B

exp(t)

exp(✏0 · ⌧)

exp(✏00 · ⌧)

T

T

✏0

T

✏00

⌧⇤

exp(⌧⇤)

exp(⌧⇤)

exp(⌧⇤)

Fig. 1. Preserving spatial information.

let (ε′, ε′′) ∈ R2
>0 be given and let ε′ > 1 > ε′′. It follows,

σε′(p(t)) = p(ε′ · τ), τ ∈
[
0, T

ε′

]
, which is associated

to blue color, while σε′′(p(t)) = p(ε′′ · τ), τ ∈
[
0, T

ε′′

]
,

which is associated to red color. As illustrated, in all three
cases the spatial information is preserved ; e.g., the straight
line from A to B which is in the black color. However,
temporally, they to differ. In particular, the difference is
the rate at which each line is drawn and time it took
to complete each line; e.g., it is possible to temporally
characterize them. In particular, because ε′′ < 1 < ε′, the
line associated with the green color is drawn at a slower

rate than the line associated with the blue color and at
the faster rate than the line associated with the red color.
To illustrate this even further, at the (“universal”) time
instant τ∗, the corresponding point on the straight line
from A to B associated with the blue color is ahead of the
corresponding point on the line from A to B associated
with the green color which is ahead of the corresponding
point on the line from A to B associated with the red color.
Correspondingly the times it takes to complete the circle
associated with the blue, green and red color, respectively,
satisfy T/ε′ < T < T/ε′′. �
Remark 3. The concept of spatial projection mapping (see
Definition 1) has also been explored for a more specific
class of nonlinear systems. In particular, in Lješnjanin,
Merid and Tan, Ying and Oetomo, Denny and Freeman,
T., Christopher (2017), a class of nonlinear uncertain
systems with input saturation is considered. Even though
the same concept of spatial projection mapping is being
explored, the corresponding SILC problem formulation
and convergence analysis differs from the present one.
Namely, the proposed SILC controller is more complex
while the convergence of the state error is demonstrated
using a Composite Energy Function technique (e.g., cf. Xu
and Tan (2003)). �

Now, consider the following dynamical system,

ẋ
(
i, ε(i) · t

)
= ε(i) · f

(
ε(i) · t, x(i, ε(i) · t), u(i, ε(i) · t)

)
, (4a)

y
(
i, ε(i) · t

)
= h

(
ε(i) · t, x(i, ε(i) · t), u(i, ε(i) · t)

)
, (4b)

where,
(
i, t

)
∈ N0 × [0,Ti] is an element of a two dimen-

sional temporal space with,

Ti :=
T

ε(i)
, T ∈ R>0, (5)

and where,
ε : N0 → R>0, (6)

is a mapping that captures at what rate the dynamics
of (4a) evolves at each iteration i. More about this map-
ping is included below. Before proceeding further, notice
that the system (4) can be interpreted as the spatial pro-
jection (see Definition 1 and Example 1) of the system (1)
with respect to the mapping (6). To help the reader, in the
sequel, the system (4) is succinctly represented as,

ẋi|εi = εi · f(εi · t, xi|εi , ui|εi), (7a)

yi|εi = h(εi · t, xi|εi , ui|εi). (7b)

Correspondingly, consider a model of a desired behavior,

ẋd

(
εi(i) · t

)
= εi(i) · f

(
ε(i) · t, xd(εi(i) · t), ud(εi(i) · t)

)
, (8a)

yd
(
εi(i) · t

)
= h

(
ε(i) · t, xd(εi(i) · t), ud(εi(i) · t)

)
. (8b)

Notice that the desired behavior model (8) is also ac-
cordingly spatially projected. Similarly as for (4), in the
rest of the manuscript, the desired behavior model (8) is
compactly represented as

ẋd|εi = εi · f(εi · t, xd|εi , ud|εi), (9a)

yd|εi = h(εi · t, xd|εi , ud|εi). (9b)

Now, the ILC objective is the same. In particular, con-
struct an ILC control law so that desired behavior is
learned after sufficiently many iterations. However, unlike
in the traditional ILC framework, now there is an extra
variable ε (see (6)), which directly affects (4)-(5) and (9).
Thus, before stating precisely the ILC objective it is nec-
essary to elaborate more on it. Firstly, the variable ε (6)
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