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a b s t r a c t

This paper proposes two novel improved iterative learning control (ILC) schemes for systems with
randomly varying trial lengths. Different from the existingworks on ILCwith variable trial lengths that ad-
vocate to replace themissing control information by zero, the proposed learning algorithms are equipped
with a searching mechanism to collect useful but avoid redundant past tracking information, which
could expedite the learning speed. The searching mechanism is realized by the newly defined stochastic
variables and an iteratively-moving-average operator. The convergence of the proposed learning schemes
is strictly proved based on the contractionmappingmethodology. Two illustrative examples are provided
to show the superiorities of the proposed approaches.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In our daily lives, one could complete a given task and improve
the performance gradually provided that the operation is repeated.
Suchprocess for humanbeing is usually called the learning process.
Inspired by this basic cognition, iterative learning control (ILC)
theory is developed for systems that are able to complete tasks over
a fixed time interval and perform them repeatedly. By synthesizing
the control input from the previous control input and tracking
error, the controller is able to learn from the past experience and
improve the current tracking performance. Since first introduced
by Arimoto in 1980s [1], ILC has attracted much attention from
both scholars and engineers over the past three decades andmany
achievements have been made [2–13].

When considering learning, a basic premise is that the desired
task should be performed under same conditions such as identical
initial condition and identical trial length for all iterations. In fact,
such premise has been assumed in most ILC literature. However,
one may find that this assumption is commonly violated in many
practical applications due to system uncertainties. That is, the trial
lengths may vary in the iteration domain. For instance, [14–17]
provided several practical systems that run repeatedly but the
trial lengths are not identical due to the complex external en-
vironments. Specifically, [14] investigated the application of ILC
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to humanoid robots, where the gaits problems were divided into
phases defined by foot strike times and the durations of the phases
were usually not the same from iteration to iteration during the
learning process. Moreover, two biomedical systems including
functional electrical stimulation for upper limb movement and for
gait assistance were introduced in [15–17]. Due to the unknown
dynamics and related complex factors, the learning process might
end earlier and start the next iteration. Another example is the
trajectory tracking with output constraints on a lab-scale gantry
crane given in [18].When the output constraintswere violated, the
load was wound up and the trial was terminated, which results in
variable pass lengths for ILC [18]. Motivated by these observations,
ILC problemwith iteration-varying trial lengths has attractedmore
and more attention in recent years.

In the existing literature, there are some works addressing ILC
design problems with non-uniform trial lengths from different
technical perspectives [16–24]. First, Li et al. proposed an ILC
framework for both discrete-time linear and continuous-time non-
linear systems with randomly varying trial lengths by introducing
a stochastic variable to describe the randomness of trial lengths
in [19] and [21], respectively. In [19], to deal with the randomly
varying trial lengths, an iteration-average operator of all histori-
cal data was employed in the ILC algorithm to reduce the effect
of the lost tracking information. While in [21], instead of using
all historical control information, an iteratively-moving-average
operator is adopted in ILC law where only the most recent con-
trol information will be utilized for learning since ‘older’ control
information would reduce the corrective action from the most
recent trials. Moreover, to avoid the utilization of λ-norm, a lifted
framework of ILC for discrete-time linear systems was provided
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in [20]. However, it is worthy noting that the convergence of the
tracking errors in [19–21] is derived in the sense of mathematical
expectation. Fortunately, there are some works showing stronger
convergence properties of ILC with non-uniform trial lengths. For
example, the almost sure and mean square convergence of a P-
type ILC was established in [23,24]. Specifically, [23] considered
a discrete linear system where the path statistic properties of the
input error, namely, mathematical expectations and covariances,
were first recursively calculated along the iteration axis. Based
on the recursions of expectations and covariances of the input
error, the convergence in the sense of expectation, mean square,
and almost sure was derived in sequence. In [24], the ILC design
problem was extended to a class of affine nonlinear systems,
where the techniques used in [23] were no longer applicable
for nonlinear systems. Thus, a modified λ-norm and a technical
lemma were introduced to pave the way of showing the almost
sure convergence of the tracking error. Furthermore, Seel et al.
also contributed much on this topic, where the main focus lies
in the monotonic convergence property [15,18,22] and practical
applications [16,17]. A primary result is given in [15], where the
authors presented the conditions of learning gain matrix for en-
suring monotonic convergence. However, the calculations of the
learning gain rely upon a completely known system model, which
restricts the applicability of the proposed algorithm. A similar
technique was applied to the trajectory tracking problem of a lab-
scale gantry crane in [18]. The extended version of monotonic
convergence with more detailed explanations was reported in a
recent paper [22]. Additionally, [16,17] apply ILC with variable
pass lengths in the Functional Electrical Stimulation (FES)-based
treatment systems for strike patients. These two works also show
that the addressed problem has great significance in real-time
applications. However, it isworthwhile to highlight that a common
feature of the works [18–24] on ILC with non-uniform trial lengths
is to replace themissing tracking error information with zero. That
is, when the tracking information is not available due to varying
trial lengths, the lacked data is set to be zero. Therefore, how to
develop a new ILC algorithm that is able to improve the control
performance for systems with iteration-varying trial lengths, is an
interesting and challenging problem.

Motivated by the above observations, in this paper, two novel
improved ILC schemes are proposed for a class of discrete-time
linear systems with randomly varying trial lengths. Different from
the previous works on ILC with variable trial lengths that advocate
to replace the missing tracking information by zero, the proposed
learning algorithms are equipped with a searching mechanism to
collect useful but avoid redundant past control information, which
could expedite the learning speed. The searchingmechanism is re-
alized by introducing a new stochastic variable and an iteratively-
moving-average operator.

The aim and main contribution of this paper is to reduce the
impact of the randomly varying trial lengths to the learning control
algorithm and to expedite the convergence speed. To achieve the
objective, two ILC laws are proposed. More precisely, the first ILC
scheme is proposed to reduce the redundant control information,
which appears in the design of ILC laws in [19–21], while the
second one is developed to make full use of the effective previous
control information to further expedite the learning speed. In addi-
tion, the almost sure convergence for both ILC schemes is provided
in a rigorous way.

The rest of the paper is organized as follows. Section 2 presents
the problem formulation. Section 3 and 4 contribute to the con-
troller design and convergence analysis. Furthermore, numerical
simulations are given in Section 5 to verify the validation of the
proposed control algorithms. Section 6 draws a conclusion of this
work.

Notations. R is the real set and Rn is the n-dimensional
space. N is the set of positive integers. ∥ · ∥ denotes the Eu-
clidean norm of its indicated vector or matrix. Denote ∥f(t)∥λ ≜
supt∈{0,1,2,...,T }α

−λt
∥f(t)∥ and ∥f(t)∥s ≜ supt∈{0,1,2,...,T }∥f(t)∥ the

λ-norm and s-norm of a vector function f(t) respectively with λ >

0 and α > 1.

2. Problem formulation

Consider the following discrete-time linear system

xk(t + 1) = Axk(t) + Buk(t),
yk(t) = Cxk(t),

(1)

where k ∈ N is the iteration index, t ∈ {0, 1, 2, . . . , Tk} denotes the
time instant, and Tk is the trial length at the kth iteration.Moreover,
xk(t) ∈ Rn, uk(t) ∈ Rp, and yk(t) ∈ Rr denote the state, input,
and output of the system (1), respectively. Furthermore, A, B and
C are constant matrices with appropriate dimensions. It is worth
to point out that the results and convergence analysis in this paper
can be extended to linear time-varying systems straightforwardly,
and thus we just consider the time-invariant case to clarify our
idea. Let yd(t), t ∈ {0, 1, 2, . . . , Td}be the desired output trajectory.
Assume that, for any realizable output trajectory yd(t), there exists
a unique control input ud(t) ∈ Rp such that

xd(t + 1) = Axd(t) + Bud(t),
yd(t) = Cxd(t),

(2)

where ud(t) is uniformly bounded for all t ∈ {0, 1, 2, . . . , Td} with
Td being the desired trial length.

The control objective is to tack the desired trajectory yd(t), t ∈

{0, 1, 2, . . . , Td} by determining a sequence of control inputs uk
such that the tracking error converges as the iteration number k
increases.

Before addressing the controller design problem, the following
assumptions are imposed.

A 1. The coupling matrix CB is of full-column rank.

A 2. The initial states satisfy ∥xd(0) − xk(0)∥ ≤ ϵ, ϵ > 0.

Remark 1. The initial state resetting problem is one of the funda-
mental issues in ILC field as it is a standard assumption to ensure
the perfect tracking performance. In the past three decades, some
papers have devoted to remove this condition by developing addi-
tional control mechanisms such as [25–27]. Under assumption A2,
since the initial state is different from the desired initial state,
it is impossible to achieve the perfect tracking. Instead, the ILC
algorithms should force the systemoutput to be as close as possible
to the target.

Remark 2. It is worthy noting that, unlike the classic ILC theory
that requires control tasks to repeat on a fixed time interval, the
trial lengths Tk, k ∈ N are iteration-varying and may be different
from the desired trial length Td. For the case that the kth trial length
is shorter than the desired trial length, both the system output
and the tracking error information will be missing and cannot be
used for learning. Thus, this paper aims to re-design ILC schemes
to make up the missing signals by making full use of the previ-
ous available tracking information, and thus expedite the learn-
ing speed. Although some previous works have been published
[19–21], a basic assumption is that the probability distribution
of Tk is known prior. In this paper, the proposed ILC algorithms
will be equipped with an automatic searching mechanism, thus
the probability distribution of randomly varying trial lengths is no
longer required.
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