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A B S T R A C T

Iterative learning control (ILC) is an efficient way of improving the tracking performance of repetitive systems.
While ILC can offer significant improvement to the transient response of complex dynamical systems, the
fundamental assumption of iteration invariance of the process limits potential applications. Utilizing abstract
Banach spaces as our problem setting, we develop a general approach that is applicable to the various
frameworks encountered in ILC. Our main result is that robust invariant update laws lead to stable behavior in
ILC systems, where iteration-varying systems converge to bounded neighborhoods of their nominal counter-
parts when uncertainties are bounded. Furthermore, if the uncertainties are convergent along the iteration axis,
convergence to the nominal case can be guaranteed.

1. Introduction

Iterative learning control (ILC) has been recognized as an efficient
way of improving the tracking performance of repetitive systems since
the early 1980s (Arimoto, Kawamura, and Miyazaki, 1984). ILC can
offer significant improvement to the transient response of complex
dynamical systems with a high level of uncertainty through relatively
simple algorithms (Bristow, Tharayil, and Alleyne, 2006; Moore, 1993).
The fundamental assumption that enables the success of these algo-
rithms has been iteration invariance of the: 1) plant dynamics, 2)
exogenous disturbances, 3) initial conditions, and 4) reference signals.
This assumption greatly simplifies the ILC problem and enables the
control engineer to design an asymptotically stable recurrence relation
in the iteration domain by employing a contraction mapping. Even
though the assumption is unrealistic, similar to feedback control of
linear time-invariant (LTI) systems, it yields good results in practice
provided that the variation of the process (dynamics, exogenous
disturbances, initial conditions etc.) from trial to trial is small.

1.1. The feedback analogy

The restrictive nature of the invariance assumption is perhaps best
understood via an analogy to feedback control, since a common

interpretation of ILC is that of a feedback controller in the iteration
domain, as per the following discussion: Let P U Y: → be a bounded
linear operator, where U is the space of admissible inputs and Y is the
space of outputs. Assuming that P is known and there are no
exogenous signals apart from uk affecting the output, the classical
ILC problem can be stated as that of finding a controller C that maps
the input history u u u U, , …, ∈k0 1 −1 to the current input uk, such that
the output y Pu=k k converges to a desired reference r in the image of P
as k → ∞. In most cases, C is designed to consider only the previous
iteration, thus giving rise to the name first-order ILC. The internal
model principle then dictates that the controller (update law) C
includes integral action to guarantee perfect tracking in the limit, so
C u u L r Pu( ) = + ( − )k k k−1 −1 , as can be seen in Fig. 1, which guarantees
y r→k even in the case where the output is corrupted by a constant
vector d Y∈ such that y Pu d= +k k . Essentially, the ILC problem is
that of designing a “time”-invariant feedback controller for a constant
static plant to track step references (Moore, 1993), under the assump-
tion of constant disturbance signals.

The objective of this paper is to generalize the ILC problem by
relaxing the invariance assumption, which restricts the feedback
analogy to setpoint tracking, and fails to capture the generality
associated with the feedback paradigm. In practice, initial conditions
and disturbances are always subject to variations, while references
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and plants can commonly appear as outputs of higher-order internal
models (HOIMs)1 in the context of robotic manipulators doing
different tasks, or freeway traffic models (Hou, Yan, Xu, and Li, 2012).

1.2. Literature review

Linear feedback control encompasses a wide array of problems and
their accompanying solutions, such as stabilization, robustness, optim-
ality, sensitivity reduction, fundamental limitations, and design trade-
offs. Since the 1990s, there has been an increased effort in the ILC
community to generalize the classical problem in these directions.
These include the synthesis of 1) robust ILC algorithms (Norrlöf, 2004;
Ahn, Moore, and Chen, 2007b; van de Wijdeven, Donkers, and Bosgra,
2009; Bristow, 2010; Moon, Doh, and Chung, 1998; De Roover and
Bosgra, 2000; Altın and Barton, 2014), 2) norm-optimal ILC algo-
rithms with quadratic cost functions, 3) adaptive ILC (AILC) meth-
odologies (French, Munde, Rogers, and Owens, 1999; Tayebi, 2006;
Tian and Yu, 2003; Wang, Su, and Hong, 2004), along with the study of
performance guidelines and design trade-offs (Ahn et al., 2007b;
Moore and Lashhab, 2010; Pipeleers and Moore, 2012). See also
Bristow et al. (2006), Ahn, Chen, and Moore (2007a), Xu (2011) and
the references therein.

Implicit in the vast majority of these earlier works is the invariance
assumption in some form. To date, there has been relatively limited
material attempting to relax these assumptions. Among these, initial
condition invariance was by far the most discussed topic earlier in the
literature, since perfect resetting can be hard to achieve for certain
systems (Heinzinger, Fenwick, Paden, and Miyazaki, 1992). The
central result of Heinzinger et al. (1992) shows that initial condition
resetting errors and bounded disturbances affect the tracking error
continuously, provided they are uniformly bounded in the iteration
domain. The effects of varying disturbance signals have been studied in
stochastic settings (Bristow, 2010; Norrlöf, 2004; Ahn et al., 2007b;
Saab, 2006). Varying references are also increasingly studied in ILC
theory; AILC is one of the avenues in which this objective is pursued
(Xu and Xu, 2004; Xu, 2011), while some other works consider
parametrizing the set of references by basis functions (Hoelzle,
Alleyne, and Johnson, 2011; Bolder and Oomen, 2015; Bolder,
Oomen, Koekebakker, and Steinbuch, 2014; van Zundert, Bolder, and
Oomen, 2016) or library-based interpolations (Hoelzle and Barton,
2012). Lastly, iteration-varying plant models are actively studied in the
case that they can be described by a HOIM (Yin, Xu, and Hou, 2010),
with generalizations to iteration-varying references and signals con-
sidered in Zhu, Xu, Huang, and Hu (2015).

Despite all these efforts, the feedback interpretation of ILC still
paints mostly an incomplete picture, and lacks the fundamental
notions of asymptotic and input-output stability. In this sense, the
introduction of the w-transform (z-transform in the iteration domain)

in Chen and Moore (2002) has been crucial in adopting a more holistic
view of ILC as an input-output system, induced by feedback control in
the iteration domain. The transform enables the integration of itera-
tion-varying signals into the ILC problem and is a good step towards
the establishment of input-output stability properties in ILC. However,
it restricts the analysis to iteration-invariant plants and update laws.
On the other hand, while Norrlöf and Gunnarsson (2002) presents a
framework to investigate the stability of discrete-time iteration-varying
systems, the analysis is restricted to iteration-invariant signals. Finally,
a robust ILC framework for discrete-time systems in state-space form is
analyzed recently in Meng and Moore (2016), Meng and Moore (2014),
wherein the treatment is limited to classical D-type ILC algorithms.
While the results of these two papers are theoretically important, the
authors make no comments on how the learning gain matrices can be
designed when the sole information on the uncertainty is boundedness.

Our aim in this paper is to construct a general framework
encapsulating a broad class of systems in order to, 1) analyze stability
properties of ILC in the presence of iteration-varying signals (including
references) and plant operators, where the operators are assumed to
belong to a bounded set and otherwise unknown, and 2) connect our
analysis to the robust ILC literature by showing that robust updates
lead to stable behavior in ILC. In addition, we will compare the
performance of this uncertain iteration-varying system to its nominal
invariant counterpart, discuss how nominal performance can be
recovered, and verify the theory with simulation examples and experi-
mental implementation.

1.3. Organization of the paper

The remainder of the manuscript is organized as follows: Section 2
introduces preliminaries and the ILC problem. Section 3 proves the
basic boundedness result of the algorithm. In Section 4, asymptotic
performance and design trade-offs are investigated. Section 5 describes
the experimental setup, which also forms the basis for the simulation
examples. Simulation examples are presented in Section 6, with the
experimental results following in Section 7. Finally, concluding re-
marks are given in Section 8.

2. Background and problem statement

Consider the classical first-order ILC problem discussed in Section
1. We assume U and Y to be Banach spaces equipped with suitable
norms. We base this assumption on the fact that Banach spaces are the
natural settings of contraction mapping-based ILC, which relies on the
Banach fixed-point theorem. Furthermore, p and lp spaces, the
natural framework for one-dimensional dynamic systems, are com-
plete. The motivation for this assumption is to come up with a general
framework that contains the variety of different settings in ILC,
consistent with the vector space approach in Moore (1993).

The Banach space framework is discussed further in Appendix A.
For simplicity, the reader can assume P to be an appropriate real lower
triangular (causal) matrix describing a discrete-time linear system, or a
stable transfer function P s( ), without any loss of generality.

2.1. Notation and preliminaries

We take  to represent the set of nonnegative integers and + the
set of positive integers. For normed vector spaces X and V, B X V( , ) is
the space of all bounded linear operators from X to V. We use ∥. ∥ to
denote vector and induced operator norms in the relevant spaces. For a
family of operators indexed by a subset of , the product notation
indicates the composition of the operators in increasing order; e.g.

H H H H∏ ≜ …i j
k

i k k j= −1 for j k≤ and H I∏ ≜i j
k

i= for j k> , where I is the
identity. The uniform distribution over a b[ , ] is denoted a b( , ).

For a rigorous study of the convergence and stability properties of

Fig. 1. Feedback control in the iteration domain interpretation of ILC: The integral
action of the control law ensures that the output yk converges to r for constant d d=k for

the static plant P , provided the feedback loop is stable. Here, w−1 represents the trial-
delay operator, and dk is a term that represents disturbances and the effect of initial
conditions.

1 That is, systems wherein the plant operator Pk at trial k is a function of
P P P, , …,k k k n−1 −2 − for some n. However, to the best of our knowledge, there have been
no studies on whether HOIMs occur naturally in physical systems.
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