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• Bayesian Iterated Learning converges to the prior in structured populations.
• We characterize the rate at which populations approach the stationary distribution.
• Population structure increases the probability that neighbors share a language.
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a b s t r a c t

Previous work on iterated learning, a standard language learning paradigm where a sequence of learners
learns a language from a previous learner, has found that if learners use a form of Bayesian inference,
then the distribution of languages in a population will come to reflect the prior distribution assumed by
the learners (Griffiths and Kalish 2007). We expand these results to allow for more complex population
structures, and demonstrate that for learners on undirected graphs the distribution of languages will
also reflect the prior distribution. We then use techniques borrowed from statistical physics to obtain
deeper insight into language evolution, finding that although population structure will not influence the
probability that an individual speaks a given language, it will influence how likely neighbors are to speak
the same language. These analyses lift a restrictive assumption of iterated learning, and suggest that
experimental and mathematical findings using iterated learning may apply to a wider range of settings.

© 2016 Elsevier Inc. All rights reserved.

Language changes; English today is slightly different from a
hundred years ago, and radically different from a thousand years
ago. An important cause of language change is the variation that
occurs during the language learning process (see, e.g., DeGraff,
2001). One of the major tools that has been used to study the
impact of language learning on the structure of languages is the
iterated learning model (Kirby, 2001). In iterated learning, a set
of simulated learners each learn language from the utterances
of other learners and then produce utterances themselves that
are provided to other learners. Repeating this process, the
learners reshape the language. Simple learning algorithms can
lead to significant changes, increasing the regularity of languages
(Brighton, 2002; Kirby, 2001; Smith, Kirby, & Brighton, 2003) and
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expressing or even emphasizing the biases of learners (Griffiths &
Kalish, 2007; Kirby, Dowman, & Griffiths, 2007).

The simplest iterated learning model – the case that submits
most easily tomathematical analysis – is the transmission chain, in
which each learner learns from the previous learner and generates
utterances for the next. However, more complex models are
possible. Exploring these models is important in two ways. First, it
lets us establish the generality of results obtained for transmission
chains, which represent the majority of previous analyses. Second,
it allows us to explore phenomena that only emerge in more
complex models. For example, speakers of the same language tend
to cluster together spatially — something that is hard to explain
using transmission chains.

In this paper, we explore how more complex population
structures influence the outcome of iterated learning. We begin
by introducing a formal framework for analyzing iterated learning
in which learning is modeled as Bayesian inference. We then
build on previous analyses of transmission chains by Griffiths and
Kalish (2007), showing that similar analytic results can be obtained
with populations where the relationships between learners can
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be expressed as a heterogeneous graph. We verify these results
using simulations with two-dimensional lattices, small-world
graphs (Watts & Strogatz, 1998) and scale-free graphs (Barabasi
& Albert, 1999), population structures that mimic some of the
properties of real populations. These simulations show that
neighbors in a graph are more likely to share the same language
than is expected by chance. To quantify this effect we utilize
techniques developed for voter models (Castellano, 2012; Sood,
Antal, & Redner, 2008) and show that although the graphical
structure of a population does not change how likely an individual
learner speaks a certain language, it does impact how likely it is
that neighbors will be able to communicate.

1. Iterated Bayesian learning

In the simplest iterated learningmodel, a population is assumed
to be a series of parallel transmission chains. At each step in the
chain, a learner learns a language from a single teacher and then
transmits a language to a single student. The dynamics of this
process depend on the learning algorithm that is used by the
students.

One way to specify a learning algorithm is to assume that
learners use a form of Bayesian inference (Griffiths & Kalish, 2007).
Adopting a language then becomes a statistical inference task
where the inductive biases of learners – those factors other than
the data that lead them to favor one language over another – are
expressed as a prior probability distribution over languages. Under
this assumption, learners choose to speak a language, L, based
on hearing linguistic data, D. We assume that the probability of
speaking L is the same as the posterior probability of the language,
calculated using Bayes’ rule,

p(L|D) =
p(D|L)p(L)

p(D)
, (1)

where p(L) is the prior probability of the language, which may not
be equal across languages.

Griffiths and Kalish (2007) showed that for transmission chains
the probability that a learner speaks a language, L, after a large
number of generations is the same as the prior probability of the
language, p(L). Formally, the stationary distribution of the resulting
stochastic process is the prior distribution over languages. This
result is interesting because it suggests that the variation observed
in modern languages can be directly connected to the inductive
biases of human language learners. Kirby et al. (2007) expanded
on this result, showing that variations on Bayesian learning in
which learners are more likely to choose languages with higher
posterior probabilities can exaggerate the impact of the prior on
the stationary distribution, allowing weak inductive biases to have
a strong effect on the structure of the languages produced by
iterated learning.

However, this simplest iterated learning model may not accu-
rately represent real populations. To explore the generality of these
results, Smith (2009) relaxed the assumption of learning from a
single teacher and examined populations of learnerswho learned a
single language from multiple teachers. Using simulations, Smith
showed that the language such learners acquire is highly depen-
dent on the initial distribution of languages in a population, and
more weakly influenced by prior probabilities. Burkett and Grif-
fiths (2010) pursued these results further, and found that if learn-
ers could learn multiple languages from multiple teachers, the
distribution of languages in the population over a number of gener-
ations will still mirror the prior probability of each language. Con-
vergence to a stable equilibrium that is not the prior distribution
can also occur if fitness is added into the model (Kalish, 2007).

In the remainder of the paper, we relax a different assumption
and consider learners in a structured population who each learn

from a single teacher. The goal of this model is to examinewhether
the structure of a population will affect the long-term distribution
of languages in the population.

2. Introducing population structure

A natural way to capture population structure in cultural
evolution is to analyze evolutionary dynamics on graphs, where
each node is an agent and edges indicate connections between
those agents (e.g., Nowak, 2006). In this section, we analyze
iterated Bayesian learning on heterogeneous graphs.

2.1. Bayesian language learning on graphs

Represent a population as a set of N learners arranged on
a graph. Each learner speaks one of two languages, L0 or L1.
Population dynamics are included using a birth–death process: at
each time step, a random learner is replaced by a novice learner,
the novice learner randomly selects a neighbor, hears an utterance
from them, and selects a language based on that utterance. This
birth–death process is an abstraction of the biological and cultural
processes that shape when and how a learner learns a new
language. Although a ‘‘birth’’may represent an actual birth of a new
learner, it might also represent an individual who has chosen to
change the language they speak.

Under a Bayesian learning algorithm, learners adopt a language
based on a linguistic utterance, D, by selecting a language
proportional to the posterior probability of each language,

p(Li|D) =
p(D|Li)p(Li)

p(D|L0)p(L0) + p(D|L1)p(L1)
. (2)

We assume that each utterance is consistent with either L0 or
L1, and when asked to speak, a teacher correctly produces an
utterance consistent with their language with probability 1 − ϵ,
where ϵ represents an error rate in production. If an utterance,
D, is consistent with a language, Li, then p(d|Li) = 1 − ϵ. Innate
linguistic preferences are included through the prior probability of
each language, p(Li).

2.2. Stationary distribution of languages

In this section,wedemonstrate thatwhen learning froma single
teacher on heterogeneous graphs, the probability that a specific
learner speaks a language after many generations is the same as
the prior probability of that language. This extends the result that
Griffiths and Kalish (2007) proved for transmission chains to more
complex population structures.

An intuition for this result can be obtained by re-imagining
the transmission of languages across a graph as a set of chains.
In each update, we consider updating the value of a single
learner by having that learner learn from a teacher. If we look
back in time, that teacher learned their language from someone
else, so consider the teacher’s teacher. We can then construct a
chain of teacher–learner pairs from any individual back to one
of the individuals in the initial population. This chain is akin to
a transmission chain. The probability that the learner at the end
of a chain speaks a language should thus converge to the prior
distribution as the chain gets longer.

To make this intuition more precise, we introduce the notion
of a Markov process: a process where the probability of future
states depends only on the current state. The birth–death process
we describe above is a Markov process: each update only depends
on the current languages that the learners have adopted, not on
the languages spoken by deceased learners. This process is also
ergodic: because of the noise in transmission, each learner has a
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