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Abstract: This paper considers the design of an observer-based iterative learning control law
for discrete linear systems using repetitive process stability theory. The resulting design produces
a stabilizing feedback controller in the time domain and a PD-type of feedforward controller
that guarantees monotonic convergence in the trial-to-trial domain. Furthermore, the new design
procedure includes limited frequency range specifications, which will be of particular interest
in some applications. All design computations required for the new results in this paper can
be completed using linear matrix inequalities. A simulation example is given to illustrate the

theoretical developments.
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Iterative learning control (ILC) arose from research for
systems that repeat the same finite duration task over and
over again. Each repetition is termed a trial or pass in the
literature and the trial (or pass) length is the name given to
the finite duration of each trial. The notation for variables
used in this paper is gi(p), 0 < p < a — 1, where ¢ is
the scalar or vector valued variable under consideration,
k > 0, is the trial number and o < oo is the number of
samples along the trial for discrete dynamics (« times the
sampling period gives the trial length).

One each trial is complete, all information generated is
available and if stored can be used to compute the control
input for the next trial. Hence it is possible to implement
ILC laws that use information that would be non-causal
in the standard sense, provided it has been generated on
a previous trial, e.g., at sample instant p information at
p+A, A > 0, can be used. The inclusion of such information
is the distinguishing feature of ILC.

The original work on ILC (Arimoto et al., 1984) considered
a derivative, or D type, law for an electric motor and since
then this design method has remained as a significant area
of control systems research with many algorithms experi-
mentally verified in the research laboratory and applied in
industrial applications, see, e.g., (Ahn et al., 2007; Bristow
et al., 2006) as starting points for the literature and (Wang
et al., 2009) is a starting point for the literature on ILC
applications in the chemical process industries. Particu-
lar application examples include industrial robotics, see,
e.g., (Norrlof, 2002), where the pick and place operation
common in many mass manufacturing processes is an im-
mediate fit, and marine systems, see, e.g., (Sornmo et al.,
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2016). More recently, ILC algorithms first developed in
the engineering domain have been used in robotic-assisted
upper limb stroke rehabilitation with supporting clinical
trials (Freeman et al., 2009, 2015).

Suppose, in the single-input single-output case with an
immediate generalization to the multiple-input multiple-
output examples, a reference signal y4(p) is available for
an application. Then the error on trial & is eg(p) = ya(p) —
yr(p), 0 <p < a — 1, where yi(p) is the output. The ILC
design problem is to construct a control input sequence
such that the error sequence converges from trial-to-trial.
In formal terms, the requirement is to construct a control
sequence {uy} such that

lim |legx|] =0, lm ||Jug —us|| =0, (1)
k—o0 k—o0
where || - || is a signal norm in a suitably chosen function

space with a norm-based topology and u., is termed the
learned control.

The finite trial length means that trial-to-trial (in k) error
convergence can be achieved even if the system is unstable
and hence the presence of ‘growth’ terms in the transient
response (in p) along the trials. One option in such cases
is to first design a stabilizing control law and then apply
ILC to the resulting controlled system. A commonly used
setting for ILC design for discrete dynamics is the lifting
setting, which is based on the use of so-called supervectors.
Consider again the single-input single-output case. Then
since the trial length is finite the sampled values of,
e.g., the output can be assembled into a column vector
where the entries correspond to their sample instants along
the trial. Applying this to all variables enables the error
dynamics to be written as a difference equation in k, to
which standard results can be applied to design the ILC
law.
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An alternative approach to ILC design is to use the two-
dimensional(2D) /repetitive systems setting (Rogers et al.,
2007, 2015) i.e., systems that propagate information in
two independent directions, where for ILC these directions
are from trial-to-trial and along each trial respectively.
Repetitive processes evolve over a subset of the upper
right quadrant of the 2D plane and make repeated sweeps
through dynamics defined over a finite duration. Hence,
they are a more natural setting for ILC analysis than other
2D systems models. A particular advantage of repetitive
process based ILC design is that trial-to-trial error conver-
gence and the dynamics along the trial can be considered
in one setting and also the analysis extends to differential
dynamics whereas the lifting approach does not.

A common form of ILC law is the proportional plus
derivative, or PD-type, consisting of proportional and
derivative gains acting on the tracking error. This form
of ILC law is one of the earliest developed and as with
the three term control laws for standard systems has seen
many implementations, see-(Bristow et al., 2006) as a
starting point for further details and literature review.

This paper continues the development of the repetitive
process setting for ILC design, starting with a new re-
sult on the design of PD-type ILC laws where the state
feedback control is used. Implementation of such control
laws, however, requires the availability for measurement
of all state variables. Since this will often not be the
case an logical step is to consider the use of a state
observer to estimate the current trial state vector en-
tries. The analysis shows that the design problem can
be completed by formulation as a stability problem for
discrete linear repetitive processes, leading to design based
on Linear Matrix Inequality (LMI) computations. An ex-
tension to obtain LMI based conditions for ILC design
over finite frequency regions, allowing the use of different
performance specifications over particular finite frequency
ranges, see also Paszke et al. (2016), is developed. This
analysis is based on the generalized Kalman-Yakubovich-
Popov (KYP) lemma.

Throughout this paper, the null and identity matrices
with compatible dimensions are denoted by 0 and I
respectively. Moreover, sym(X) is used to denote X +
XT and X' denotes the orthogonal complement. The
notation X > Y (respectively X < Y) means that the
symmetric matrix X — Y is positive definite (respectively
negative definite). The symbol (x) denotes block entries in
symmetric matrices and p(-) and (-) denote the spectral
radius and maximum singular value, respectively, of their
matrix arguments.

Use will also be made of the following results, where the
first is the generalized KYP lemma and the second the
Elimination (or Projection) Lemma.

Lemma 1. Twasaki and Hara (2005) Consider matrices A,
]B%(), © and

_[-10 [ o e
o= { 0 1} U= {ej“’c —2cos(wq) |’ (2)

with we = (wjtwy ) /2, wg=(wy—w;)/2 and wy, w, satisfying
—7 < w; < wy, < 7. Suppose also that det(e/] — A) # 0
for all w € [w;,w,]. Then the following statements are
equivalent.
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i) Yw € [wy, wy]
(T — A) 1By o (9T — A)"'By Z0. ()
I I
ii) There exist Q > 0 and a symmetric P such that

[11& I%o} ! @R P+U @ Q) [‘? ]%0} +6<0.  (4)

Lemma 2. Gahinet and Apkarian (1994) Given a sym-
metric matrix I' € RP*P and two matrices A, X of column
dimension p, there exists a matrix W such that the follow-
ing inequality holds

I +sym{ATWX} <0, (5)
if, and only if the following two projection inequalities with
respect to W are satisfied

ALTTAY <0, st Tret <o, (6)

where A+ and ¥ are arbitrary matrices whose columns
form a basis of the null spaces of A and ¥ respectively.

Next the required background on discrete linear repetitive
processes is given.

1. DISCRETE LINEAR REPETITIVE PROCESSES

The state-space model of a discrete linear repetitive pro-
cess has the following form (Rogers et al., 2007) over
0<p<a—-1,k>0

Trt1(p+1) =Azi41(p) + Bugi1(p) + Boyk(p), )

Yr+1(p) =Cr41(p) + Dukt1(p) + Doyk(p),

where o < 400 denotes the pass length and on pass k,
zr(p) € R™ is the state vector, yi(p) € R™ is the pass
profile (output) vector and wug(p) € R! is the control
input vector. The terms Boyr(p) and Doy (p) represent
the contribution of the previous pass profile to the current
pass state and pass profile vectors respectively.

To complete the process description, it is necessary to
specify the boundary conditions, i.e., the state initial
vector on each pass and the initial pass profile (i.e., on
pass 0). For the purposes of this paper, it is assumed that
the state initial vector at the start of each new pass is of
the form x;41(0) = dg41, & > 0, where the n x 1 vector
d+1 has known constant entries. Also it is assumed that
the entries in initial pass profile vector yo(p) are known
functions of p over the pass length.

Let {yr} denote the pass profile sequence generated by
a repetitive process. Then the unique control problem is
that this pass profile sequence can contain oscillations
that increase in amplitude in the pass-to-pass direction
(k). Hence the stability theory for linear repetitive pro-
cesses Rogers et al. (2007) requires that a bounded initial
pass profile produces a bounded sequence of pass profiles
{yx}, where the bounded is defined in terms of the norm
on the underlying function space.

This stability property can be enforced over the finite pass
length of an example or uniformly, i.e., for all possible
values of the pass length. The former property is termed
asymptotic stability and the latter stability along the pass.
The finite pass length means that an example can be
asymptotically stable but produce dynamics with unac-
ceptable dynamics along the pass and hence it is stability
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