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1. INTRODUCTION

Discretization of partial differential equations (PDE) de-
scribing systems with spatial and temporal dynamics is
required to obtain discrete models that can form a basis
for the design and digital implementation of control laws.
A critical factor for this general approach is numerical
stability, i.e., the discrete approximation must produce
trajectories close to those produced by the PDE with
identical stability properties. One group of methods which
can be applied to the discretization of PDEs are based on
a finite difference approximation (Strikwerda, 1989).

Discretization of PDEs describing systems or processes
with one temporal and one spatial variable, such as the
one-dimensional heat transfer equation, results in models
that are very similar to repetitive processes (Rogers et al.,
2007). The unique characteristic of a repetitive process
is a series of sweeps, termed passes, through a set of
dynamics defined over a fixed finite duration known as
the pass length. In particular, a pass is completed and
then the process is reset to the starting location and
the next pass can begin, either immediately after the
resetting is complete or after a further period of time
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has elapsed. On each pass, an output, termed the pass
profile, is produced which acts as a forcing function on,
and hence contributes to, the dynamics of the next pass
profile. Repetitive processes are therefore a particular case
of 2D systems where there are two independent directions
of the information propagation.

In the repetitive process representation of the discretiza-
tion of PDEs, the pass number is associated with the
discrete time sample instants and the along the pass dy-
namics are governed by the discrete spatial variable, see,
e.g., (Cichy et al., 2011). One class of the finite difference
discretization schemes currently available are those known
as explicit (Rabenstein and Steffen, 2011), which were used
by (Cichy et al., 2011). These methods produce a causal in
time discrete recursive model where at any instant on the
current pass a window of sample instants on the previous
pass contributes to the dynamics. Such models are known
as wave discrete linear repetitive processes and include
the extensively studied standard discrete linear repetitive
processes as a special case, i.e., when the previous pass
contribution at time instant p on the current pass only
comes from the same instant on the previous pass.

Explicit discretization methods are conditionally numeri-
cally stable, i.e., the time discretization period is related
to its spatial counterpart, which leads to the need to use
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dense time and spatial discretization grids. One way of
overcoming this drawback is to use the so-called singular
methods, see (Rabenstein and Steffen, 2011, 2009) and, in
particular, the Crank-Nicolson method (Crank and Nicol-
son, 1947), which frequently produces an unconditionally
stable discrete approximation to the dynamics of the orig-
inal PDE. Hence, the temporal and spatial grids become
independent and can therefore be less dense. However, the
resulting discrete model is in implicit form, i.e., there is
no straightforward dependence of the pass profile at any
instance on the current pass and the window of previous
pass values. Instead, this dependence is between windows
of data points on the current and previous passes.

The simplest way of formulating and solving control prob-
lems for singular systems of the considered class requires
the use of the lifting approach, i.e., absorbing the spatial
structure of the system into possibly high dimensional vec-
tors, see, e.g., (Cichy et al., 2012) for a detailed treatment.
In this paper, the Crank-Nicolson method is extended to
systems described by PDEs defined over time and two
space variables. As a particular example, a thin flexible
plate is considered, which, e.g., can be used to model the
vibrations of a deformable mirror subject to a transverse
external force. In contrast to (Augusta et al., 2015), a
circular plate is considered and a regular hexagonal grid is
used for discretization.

Previous results (Augusta et al., 2016) can be applied
to show that the resulting discrete approximation has
the unconditional numerical stability property and hence,
relative to the discrete approximations discussed above,
a significantly less dense discretization grid can be used
with negligible degradation of the approximate model
dynamics. This, in turn, means a much smaller number
of sensors and actuators distributed over a controlled
plate can be used with advantages in terms of control
law design and implementation. As one possible option
given a discrete model, an iterative learning control law
is designed to achieve a given spatial/temporal reference
signal. Supporting numerical simulations are given.

2. PARTIAL DIFFERENTIAL EQUATION
REPRESENTATION

The dynamics of the continuous deformable mirror consid-
ered in this work are modeled by the following Lagrangian
PDE

∂4 w(t, x, y)

∂ x4
+ 2

∂4 w(t, x, y)

∂ x2 ∂ y2
+

∂4 w(t, x, y)

∂ y4

+
ρ

D

∂2 w(t, x, y)

∂ t2
=

f(t, x, y)

D
,

(1)

where

w is the lateral deflection in the z direction [m],
ρ is the mass per unit area [kgm−2],
f is the transverse external force, with dimension of force
per unit area [Nm−2],

∂2 w

∂ t2
is the acceleration in the z direction [m s−2],

D = E h3/(12 (1− ν2)),
ν is Poisson ratio,
h is the thickness of the plate [m],
E is Young modulus [Nm−2].

Boundary conditions for the case considered here are dis-
cussed in the example section, see (40). Further back-
ground on (1) can be found in, e.g., (Timoshenko and
Woinowski-Krieger, 1959). Also control action based on an
array of actuators and sensors is considered. The sensors
are distributed over the entire surface of the plate of the
diameter a, but the actuators are only used on the central
part of plate with diameter d < a. The load hence can be
modeled with a Heaviside function H as

f(t, x, y) =
(
1−H(x2 + y2 − d2)

)
q(t, x, y).

Since the function 1−H(x2+y2−d2) = 1 within the region
where the load is applied, the distributed system input is
set to f(t, x, y) = q(t, x, y) in area of the plate defined by
the diameter d and to f(t, x, y) = 0 outside this area.

To derive a model suitable for control design, the use
of an actuator array requires the discretization of (1) in
the spatial variables. Moreover, since the control will be
implemented digitally, (1) must also be discretized with
respect to time. This task is considered next.

3. DISCRETIZATION AND MODELING

The discretization of (1) is based on finite difference
methods, where, in general terms, the following steps must
be implemented:

(1) cover the region where a solution is sought by a
regular grid, i.e., a regular mesh of nodal points,

(2) replace the derivative terms in the PDE by differences
using only values at nodal points, i.e., approximate
the derivatives.

To complete these tasks, an implicit discretization of the
Crank-Nicolson form will be used. Such a discretization
results in an unconditionally numerically stable approxi-
mation of the system dynamics, see (Augusta et al., 2016)
for a full treatment.

Let p, l,m denote the time instant tp and the coordinates
of nodal points xl, ym, respectively. Consider a circular
deformable mirror using a regular hexagonal grid. Also let
the number of nodal points on the plate diagonal be an

odd number denoted by n, i.e., N = 3n2+1
4 nodal points.

In the discretization method used, derivatives arising in (1)
are replaced by finite differences as follows

∂4w

∂x4
≈ 1

4 δ4x

(
wp+2,l+2,m−2wp+2,l+1,m+1−2wp+2,l+1,m−1

+ 6wp+2,l,m − 2wp+2,l−1,m+1 − 2wp+2,l−1,m+1

+ wp+2,l−2,m + 2wp+1,l+2,m − 4wp+1,l+1,m+1

− 4wp+1,l+1,m−1 + 12wp+1,l,m − 4wp+1,l−1,m+1

− 4wp+1,l−1,m+1 + 2wp+1,l−2,m + wp,l+2,m

− 2wp,l+1,m+1 − 2wp,l+1,m−1 + 6wp,l,m

− 2wp,l−1,m+1 − 2wp,l−1,m+1 + wp,l−2,m

)
, (2)
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