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a b s t r a c t 

Iterative learning Control (ILC) is a widely used design technique for determining feedforward control in- 

puts to systems that perform the same task repeatedly. This feedforward control design problem can be 

posed as an optimization problem in the Norm Optimal ILC (NO-ILC) framework. Although NO-ILC prob- 

lems are usually formulated without constraints, they may be extended to enforce constraints by posing 

an analogous constrained optimization problem, termed Constrained Optimal ILC (CO-ILC). Typical NO-ILC 

and CO-ILC algorithms use 2-norm type cost functions (i.e., minimizing tracking error and control effort 

2-norms), which are smooth and have analytical gradient expressions for design of the update law. How- 

ever, in many applications, the max ( ∞ ) norm of tracking error is critical, which is a nonsmooth function 

and thus gradient-based ILC methods cannot be directly used. In this manuscript, we design a CO-ILC al- 

gorithm to explore the performance of using non-smooth type cost functions and compare them with the 

case using 2-norm cost function with actuator (or more generally state) box constraints. Specifically, CO- 

ILC algorithms for linear system with linear constraints are derived using (1) an ∞ -norm cost function, 

(2) a mixed (2 − ∞ ) -norm cost function and (3) a sequential (2 − ∞ ) -norm cost function; the perfor- 

mance results of these are then compared with the traditional CO-ILC using 2-norm cost function on a 

precision motion control stage experimentally. We also provide proofs for robust monotone convergence 

of the proposed CO-ILC algorithms for a class of uncertainty models. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Iterative learning control (ILC) algorithms improve performance 

for systems that execute repetitive tasks (typically by minimizing 

tracking error and control effort) by incorporating error informa- 

tion from past iterations (or trials/passes) into the control signal 

for the current iteration of the repetitive process. ILC has been suc- 

cessfully used in many applications such as industrial robots [1] , 

motion control systems [2] , wet clutch control [3] , assistive rehabil- 

itation robotics [4] and quadcopter flight control [5] because of its 

ability to realize excellent tracking performance in spite of imper- 

fect model knowledge and repetitive disturbances. 

Since ILC aims to refine the feedforward control signal from it- 

eration to iteration using error profiles from past iterations, the ILC 

problem can be recast as an optimization problem being solved in 

an iterative manner. One of the earliest optimization-based ILC al- 

gorithms was proposed in [6] , where a quadratic cost function was 
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optimized. Since then, several Norm Optimal ILC (NO-ILC) schemes 

(which design ILC update laws by minimizing a “next-iteration”

cost function) have been explored in several papers [7–10] , the ro- 

bustness and monotonicity properties of this family of algorithms 

have also been investigated [11,12] . 

In most practical applications of ILC, there are constraints im- 

posed on control effort, st ates, rate of change of state and control 

variables, etc. One approach to address these constraints in NO-ILC 

is by tuning the cost function (by including a weighting parameter 

on the control effort, etc.) The NO-ILC framework can be extended 

to enforce constraints through the formulation of a constrained 

optimization problem, termed Constrained Optimal ILC (CO-ILC) . 

Recently, several algorithms have been developed for ILC design 

for systems with constraints. Mishra et al. [13,14] proposed a 

modified interior-point-type method that combined experimental 

data in solving the optimization based ILC problem for minimizing 

tracking error with input saturation. Chu et al. [15] proposed a 

successive projection framework to solve the CO-ILC problem, 

while Freeman et al. [16] used an interior-point method to address 

constraints for the point-to-point ILC tracking problem, with the 

requirement of point-to-point tracking embedded as an equality 

constraint. Volckaert et al. [17] added a model correction step and 
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then used a sparse implementation of interior-point method to 

solve the optimal ILC problem for a class of nonlinear systems with 

constraints. Janssens et al. [18] proposed a method to estimate 

a linear time invariant system’s impulse response using previous 

iterations input/output data and then solved the constrained 

optimization problem using a commercial solver such as CPLEX. 

These algorithms have all been successfully demonstrated for 

solving the constrained ILC problem with an 2-norm type cost 

function. This norm is widely used as the cost function because of 

its smoothness (and thus the existence of a unique and bounded 

gradient/derivative). However, many applications require the opti- 

mization of non-smooth cost functions. For example, in trajectory 

tracking applications (such as disk drive control), we may wish to 

reduce the peak tracking error, which is the ∞ -norm of error. In 

active suspension control [19] , we want to minimize the magni- 

tude of the acceleration and the displacement of a car body, thus 

the ∞ -norms of acceleration and displacement are also important 

here. Therefore, a generalized framework for addressing a larger set 

of cost functions including non-smooth type cost functions can be 

very beneficial for many applications. Schoellig [20] explored the 

convergence performance of using 1, 2 and ∞ norm in the cost 

functions for a quadrotor reference tracking problem, in which the 

previous iterations’ information is used to estimate the disturbance 

(in some norm sense) and then the input is updated by solving 

a constrained quadratic program (QP) (as a one-shot optimization 

problem). Further, they also showed that error and control effort 

do indeed converge while using these norms in the objective func- 

tion. In the author’s previous paper [21] , a framework for CO-ILC 

using different norms (1, 2 and ∞ ) in cost functions was proposed. 

Instead of directly solving the constructed constrained QP or lin- 

ear program (LP) in one-shot, a modified interior-point method is 

used to solve the problem recursively, and the previous iteration’s 

measurements were used directly in every step of the optimization 

algorithm. The converged error profiles of CO-ILC using 2-norm, ∞ - 

norm and mixed-norm in cost functions were also compared based 

on simulation results. 

In this paper, the CO-ILC framework proposed in [21] is devel- 

oped further, a sequential (2 − ∞ ) -norm optimization problem is 

posed and solved. A proof for robust monotone convergence of 

the proposed algorithms for a class of uncertainties is also pro- 

vided. The main contributions of this paper are the formulation 

of CO-ILC problems with non-smooth type cost functions (specif- 

ically ∞ -norm, mixed (2 − ∞ ) -norm and a sequential (2 − ∞ ) - 

norm cost function), the proof of the proposed algorithm’s robust- 

ness, and experimental validation and comparison of the proposed 

algorithms on a linear motion stage, which are not addressed in 

[13,21] . 

The remainder of the paper is organized in the following man- 

ner: Section 2 describes the system and the general form of opti- 

mization problems considered as QPs/LPs, then an interior-point- 

type ILC update law is introduced to solve this class of problems. 

Section 3 presents the formulation of CO-ILC with non-smooth cost 

functions as a constrained QP or LP, the proof for robust monotone 

convergence under certain uncertainty is also presented. Then, the 

experimental results of implementing the proposed algorithms on 

a linear motion stage will be presented in Section 4 . Finally, con- 

clusions and open issues to be addressed in the future are pre- 

sented in Section 5 . 

2. Constrained optimal ILC 

In this section, we formulate the CO-ILC problem for a linear 

time invariant discrete-time system (stabilized in closed-loop) and 

present a modified interior-point-type method as the learning law. 

While we have developed the problem formulation with actuator 

saturation as a typical constraint, it is straightforward to extend 

Fig. 1. Block diagram of the closed-loop system with actuator saturation at the 

plant input. The feedforward input u is to be designed through ILC. 

this idea to (as will be done in Section 3 ) an arbitrary linear con- 

straint on the design variable (in this case, the feedforward control 

effort). Theref ore, st ate constraint s (f or linear systems) can also be 

incorporated into this framework. 

2.1. System description 

Consider the stable single input single output 1 (SISO) closed- 

loop system with input saturation shown in Fig. 1 . A process (i.e., 

a trajectory) is executed repeatedly by this system starting at rest 

condition for each iteration. Let P represent the discrete linear 

time-invariant (LTI) plant, which is stabilized by an LTI feedback 

controller C . Then y, u, u t , e ∈ R respectively denote the output, 

the feedforward control effort, the total control effort and the er- 

ror. Moreover, r, d ∈ R indicate the output reference trajectory and 

repetitive disturbance respectively. The saturation constraint clips 

the control effort u t to | u t | ≤ ū , where ū is the maximum ad- 

missible total control effort. Assuming that the input saturation 

constraint is never violated (i.e., we always operate in the linear 

regime), system output, total control effort and error are: 

y = g ry (z −1 ) r + g uy (z −1 ) u + g dy (z −1 ) d 

u t = g ru (z −1 ) r + g uu (z −1 ) u + g du (z −1 ) d 

e = r − y, (1) 

where g ry , g uy , and g dy are transfer functions from r, u , and d to y 

respectively, g ru , g uu , and g du are transfer functions from r, u , and d 

to u t , z 
−1 denotes the unit delay. The repetitive nature of the pro- 

cess makes this system a two-dimensional system; with evolution 

along an iteration (time) and from iteration to iteration [22] . 

In order to construct the ILC design as an optimization prob- 

lem, in this manuscript we use the lifted system description of this 

system to transform it into a one-dimensional system along the it- 

eration axis only. Lifting the system [23] yields: 

y k = G ry r + G uy u k + G dy d 

u t,k = G ru r + G uu u k + G du d 

e k = r − y k , (2) 

where r, d, y k , u k , u t,k , e k are the vectors that stack up all 

the corresponding signals in the k th iteration, for example, u k = 

[ u k (0) , u k (1) , . . . , u k (N − 1) ] 
T 
, N is the number of time samples in 

one iteration. The matrices G ry , G dy , G uy , G ru , G du , G uu ∈ R 

N×N are 

lower triangular Toeplitz matrices determined from the impulse re- 

sponse coefficients of the corresponding transfer functions. 

2.2. Constrained ILC design as an optimization problem 

Designing an ILC algorithm implies determining a learning 

function that incorporates information of the previous itera- 

tion(e.g., feedforward control signal and the corresponding error...) 

into the generation of the feedforward control signal for the next 

iteration. We can express this generally as u k +1 = F (u k , e k , . . . ) , 

where F is the learning function. 

1 The development here is limited to the SISO case only for brevity of nota- 

tion. With suitable modifications to the notation, the algorithm for a multiple-input 

multiple-output (MIMO) system can also be developed analogously. 
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