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a b s t r a c t 

Trial-varying disturbances are a key concern in Iterative Learning Control (ILC) and may lead to ineffi- 

cient and expensive implementations and severe performance deterioration. The aim of this paper is to 

develop a general framework for optimization-based ILC that allows for enforcing additional structure, 

including sparsity. The proposed method enforces sparsity in a generalized setting through convex relax- 

ations using � 1 norms. The proposed ILC framework is applied to the optimization of sampling sequences 

for resource efficient implementation, trial-varying disturbance attenuation, and basis function selection. 

The framework has a large potential in control applications such as mechatronics, as is confirmed through 

an application on a wafer stage. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Iterative Learning Control (ILC) enables significant performance 

improvements for batch-to-batch control applications, by generat- 

ing a command signal that compensates for repetitive disturbances 

through learning from previous iterations, also called batches or 

trials. Theoretical and implementation aspects, including conver- 

gence, causality, and robustness, have been addressed in, e.g., 

[1,12,41,44,45] . Furthermore, successful applications have been re- 

ported in, e.g., robotics [53] , mechatronics [9] , manufacturing [27] , 

building control [43] , nuclear fusion [19] , and rehabilitation [20] . 

However, several disadvantages of present ILC frameworks that 

limit further applications include (i) high implementation cost due 

to highly unstructured command signals, which are expensive to 

implement; (ii) amplification of trial-varying disturbances, includ- 

ing measurement noise; (iii) inflexibility to changing reference tra- 

jectories. The aim of the present paper is to develop an ILC design 

framework that enforces sparsity, which enables addressing these 

aspects (i)–(iii). 

Regarding (i) ILC typically generates signals that require a large 

number of command signal updates thus leading to an expensive 

implementation. ILC directly learns from measured signals that are 
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contaminated by trial-varying disturbances such as measurement 

noise. These trial-varying disturbances are often modeled as a re- 

alization of a stochastic process [32] . As a result, the ILC command 

signals have infinite support. In sharp contrast, command signals 

that are obtained through traditional feedforward designs, includ- 

ing [31] , have finite support and are highly sparse. Command sig- 

nals with a high number of non-zero elements, or another appro- 

priate structural constraint, may lead to a prohibitively expensive 

implementation, e.g., in wireless sensor networks, wireless control 

applications, or embedded platforms with shared resources [22] . 

Note that this is a different aspect than the actual computation of 

the command signal itself, which can be done in between subse- 

quent tasks, see [60] for results in this direction. 

Regarding (ii), ILC typically amplifies trial-varying disturbances. 

In fact, typical ILC approaches amplify these disturbances by a fac- 

tor of two, as is shown in the present paper. Approaches to at- 

tenuate trial-varying disturbances include norm-optimal ILC with 

appropriate input weighting [12] , higher-order ILC for address- 

ing disturbances with trial-domain dynamics [24] , and stochas- 

tic approximation-based ILC [14] . Also, a wavelet filtering-based 

approach is presented in [33] , where a certain noise attenuation 

is achieved by setting certain wavelet coefficients to zero. In the 

present paper, a different approach is pursued to attenuate distur- 

bances, where also wavelets immediately fit into the formulation, 

yet the sparsity can be enforced in an optimal way. 

Regarding (iii), changing reference signals typically lead to per- 

formance degradation of ILC algorithms [5] , since these essentially 

https://doi.org/10.1016/j.mechatronics.2017.09.004 

0957-4158/© 2017 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.mechatronics.2017.09.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechatronics
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechatronics.2017.09.004&domain=pdf
mailto:t.a.e.oomen@tue.nl
https://doi.org/10.1016/j.mechatronics.2017.09.004


T. Oomen, C.R. Rojas / Mechatronics 47 (2017) 134–147 135 

constitute trial-varying disturbances. This is in sharp contrast to 

traditional feedforward designs [31] and is widely recognized in 

ILC designs. A basis task approach is proposed in [26] , where the 

command input is segmented. A basis function framework is de- 

veloped and applied in [8,34,54] using polynomial basis functions, 

which is further extended to rational basis functions in [61] . These 

basis functions are typically selected based on prior information, 

e.g., based on the approach in [31] , and trial-and-error. 

In model estimation and signal processing, the use of mea- 

sured signals has comparable consequences, which has led to new 

regularization-based approaches that enforce sparsity. Early ap- 

proaches include the non-negative garrote [10] and Least Absolute 

Shrinkage and Selection Operator (LASSO) [50] . These are further 

generalized in [3,13,25,52] . Related applications in system identifi- 

cation include [38,46] . 

Although important developments have been made in ILC and 

several successful applications have been reported, present ap- 

proaches do not yet exploit the potential of enforcing additional 

structure and sparsity. The aim of the present paper is to develop a 

unified optimization-based approach to ILC that allows for explic- 

itly enforcing structure and sparsity, enabling improved resource 

efficiency, disturbance attenuation, and flexibility to varying refer- 

ence signals. The approach employs convex relaxations, enabling 

the use of standard optimization routines. 

The main contribution of the present paper is a unified frame- 

work to sparse ILC. As subcontributions, trial-varying disturbances 

are analyzed in detail for explicit ILC algorithms ( Section 3 ). Sub- 

sequently, a general optimization-based framework to sparse ILC is 

developed ( Section 4 ), including many specific cases that are rele- 

vant to ILC applications. The results are confirmed through an ap- 

plication to a wafer stage system ( Section 5 ). Related developments 

to the results in the present paper include the use of sparsity in 

control, where the main results have been related to Model Pre- 

dictive Control (MPC), see [2,21,29] . 

Notation: Throughout, ‖ x ‖ � p denotes the usual � p norm, p ∈ Z > 0 . 

Also, ‖ x ‖ 0 = 

∑ 

i 1 (x i � = 0) , i.e., the cardinality of x . Note that ‖ x ‖ 0 
is not a norm, since it does not satisfy the homogeneity property. 

It relates to the general � p norm by considering the limit p → 0 of 

‖ x ‖ p . A signal x ∈ R 

N is called sparse if many of its components are 

zero, in which case ‖ x ‖ 0 � N . In addition, ‖ ̃  X ‖ L ∞ 

and ‖ ̃  X ‖ H ∞ 

de- 

note the usual L ∞ 

and H ∞ 

norms of discrete time systems, respec- 

tively. Throughout, J denotes a system that maps an input space to 

an output space, operating either over finite or infinite time, which 

follows from the context. In certain cases, the system is assumed 

linear, time invariant, and scalar, with transfer function represen- 

tation 

˜ J . The power spectrum of a signal x is denoted φx , and is 

defined as in [32, Section 2.3] . 

2. Problem formulation 

Consider the ILC system 

e j = r − J f j − v j (1) 

be given, where e j ∈ � 2 denotes the error signal to be minimized, 

r ∈ � 2 is the reference signal, f j ∈ � 2 denotes the command signal, 

and v j ∈ � 2 represents trial-varying disturbances, including mea- 

surement noise. Here and in the sequel, all signals are tacitly as- 

sumed to have appropriate dimensions. Furthermore, J represents 

the true system, either open-loop or closed-loop, with causal and 

stable transfer function 

˜ J ∈ RH ∞ 

. The index j ∈ Z ≥0 refers to the 

trial number. Throughout, the command signal f j+1 is generated 

by an ILC algorithm 

f j+1 = F ( f j , e j ) , (2) 

where the ILC update F is defined in more detail later on. The gen- 

eral setup (1) encompasses the parallel ILC setup in Fig. 1 , where 

Fig. 1. Parallel ILC structure (3) as an example of (1) . 

e j = S ̃ r − SG f j − S ̃ v j (3) 

where S follows from its transfer function 

˜ S = 

1 

1+ ̃ G ̃ C 
, r = S ̃ r , J = SG, 

v j = S ̃ v j , and 

˜ C , ˜ G are assumed to be linear. 

From (2) and (1) , it is immediate that the trial-varying distur- 

bance v j directly affects the ILC command signal. In view of this 

observation, the problem investigated in this paper is to develop 

an ILC algorithm (2) that satisfies the following requirements: 

R1) the iteration (1) - (2) is convergent over j ; 

R2) the iteration (1) - (2) leads to a small error e j in the presence of 

trial-invariant disturbances r and trial-variant disturbances v j ; 

R3) the resulting command signal f j has a certain structure, includ- 

ing 

(a) a small ‖ f j ‖ 0 , and/or, 

(b) a piecewise constant f j with a small number of jumps. 

Here, R1 is a basic requirement for any ILC algorithm and en- 

sures stability in the trial domain, in addition to the assumed sta- 

bility in the time domain that is guaranteed by stability of J in 

(1) , see also [45] for the stability of such two-dimensional sys- 

tems. Requirement R2 essentially states that the ILC algorithm 

should effectively compensate for r , while avoiding amplification of 

trial-varying disturbances v j . Requirement R3 is imposed to enable 

resource-efficient implementations in terms of sampling or com- 

munication requirements, depending on the particular application 

requirements. 

3. Analysis of trial-varying disturbances in explicit ILC 

The main contribution of this paper is a design framework for 

ILC that allows for enforcing sparsity and structure in the com- 

mand signals, which in turn allows for explicitly addressing aspects 

(i)–(iii) as mentioned in Section 1 . The main mechanism behind 

these aspects (i)–(iii) are trial-varying disturbances. First, ILC uses 

measured data, where trial-varying disturbances lead to highly un- 

structured command signals, which in turn are expensive to im- 

plement. Second, these trial-varying disturbances are amplified by 

typical ILC algorithms. Third, typical ILC algorithms are inflexible 

to changing reference signals, which can in fact be interpreted as 

trial-varying disturbances. Since trial-varying disturbances have a 

central role in all these aspects (i)–(iii), these trial-varying refer- 

ences are analyzed in typical ILC algorithms in this section. 

In particular, explicit linear ILC algorithms of the general form 

f j+1 = Q( f j + Le j ) (4) 

are considered. The infinite time scalar case is considered, where 

Q : � 2 
→ � 2 and L : � 2 
→ � 2 . Here, Q and L have associated trans- 

fer functions ˜ Q ∈ RL ∞ 

and 

˜ L ∈ RL ∞ 

. Note that ˜ J ∈ RH ∞ 

reflects 

causality and stability of the system. The fact that ˜ Q ∈ RL ∞ 

and 

˜ L ∈ RL ∞ 

reflects that typical ILC algorithms are typically non- 

causal, and are usually implemented such that bounded solutions 

are obtained through finite-time preview or via stable inversion 

through a bilateral Z -transform [60] . 

The trial-varying disturbance v j in (1) will propagate through- 

out the iterations through the iteration-domain update (4) . The fol- 

lowing assumption is widely adopted [32] . 



https://isiarticles.com/article/105771

