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a  b  s  t  r  a  c  t

This  paper  develops  a fault-tolerant  iterative  learning  control  law  for  a class  of  differential  time-
delay  batch  processes  with  actuator  faults  using  the repetitive  process  setting.  Once  the  dynamics
are  expressed  in  this  setting,  stability  analysis  and  control  law design  makes  use  of the generalized
Kalman–Yakubovich–Popov  (KYP)  lemma  in the  form  of  the  corresponding  linear  matrix  inequalities
(LMIs).  In  particular,  sufficient  conditions  for the  existence  of  a fault-tolerant  control  law  are  developed
together  with  design  algorithms  for  the  associated  matrices.  Under  the  action  of  this  control  law  the
ILC  dynamics  have  a monotonicity  property  in terms  of an  error  sequence  formed  from  the  difference
between  the  supplied  reference  trajectory  and  the  outputs  produced.  An extension  to  robust  control
against  structured  time-varying  uncertainties  is  also developed.  Finally,  a simulation  based  case  study
on the  model  of a  two-stage  chemical  reactor  with  delayed  recycle  is given  to  demonstrate  the  feasibility
and  effectiveness  of the  new  designs.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Iterative learning control (ILC) is a method of iteratively updating the control input to a system that repeats the same task over a finite
duration. Each execution is known as a trial, or pass, and the sequence of operations is that a trial is completed, where the finite duration
is known as the trial length, the system resets to the starting position and then the next trial can begin, either immediately after resetting
is complete or after a further period of time has elapsed. Since the first work, widely credited to [1], ILC has become an established area of
control systems research, where the survey papers [2,3] are one source of the literature up to their years of publication.

In most designs, a reference trajectory is specified and the current trial error is the difference between this signal and the output. The
core aim of ILC is to force the sequence formed by the errors to converge to zero or to within an acceptable tolerance as measured by the
norm on the underlying function space. Moreover, this convergence should be monotonic in the trial number.

In application, an ILC law most often constructs the current trial input as the algebraic sum of the input used on the previous trial and a
correction term. The correction term can be designed using data from the complete previous trials or a finite number thereof. A particular
feature is the possibility to use non-causal temporal information provided it has been generated on a previous trial.

Since this first work, ILC research has found application in many areas, such as robotic systems, e.g., [4,5], motion systems, e.g., [6],
automotive systems, e.g., [7] and batch processes, e.g., [8], where for this last area the survey paper [9] is a starting point for numerous
applications areas in process control. A particular feature of many applications is experimental testing. There has also been an application
in robotic-assisted stroke rehabilitation, e.g., [10,11], with supporting clinical trials. In this last application, the ILC law is used to control the
assistive stimulation applied to the relevant muscles in the affected limb as the patient makes repeated attempts at completing a specified
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finite duration task, e.g., reaching out with the affected arm to an object across a table top. Once an attempt is complete the arm is reset
to the starting location and in this time plus a rest period, the control signal for the next attempt can be computed using data collected
during the previous attempt. If the patient is improving then as the trial number increases the patients voluntary effort should increase
and the applied stimulation decrease. Exactly this feature was detected in the clinical trials.

A common approach to ILC design for discrete dynamics is by a form of lifting. Consider, for simplicity, the single-input single-output
(SISO) case where, since the trial length is finite, the input and output on any trial can be represented by super-vectors formed by assembling
the values at the sample instants into column vectors. The result is that the ILC dynamics can be represented by a linear matrix difference
equation in the error dynamics. Hence tools from discrete linear systems theory can be used to analyze trial-to-trial error convergence and
control law design.

Given the finite trial length, trial-to-trial error convergence does not require that the system is stable, i.e., for differential linear dynamics
all eigenvalues of the state matrix have strictly negative real parts. Of course, there will be consequences for the transient dynamics along the
trials in such a case. One solution is to design a feedback control law to stabilize the dynamics and then apply the ILC design to the controlled
dynamics. An alternative is to use a 2D systems formulation, i.e., systems that propagate information in two independent directions, which
in ILC are from trial-to-trial and along the trial respectively. Early work on this approach includes [12]. Repetitive processes are a particular
subclass of 2D systems have their origins in modeling physical examples [13] for control purposes. These processes are characterized by a
series of sweeps, or passes, through dynamics defined over a finite duration. On each pass an output, termed the pass profile, is produced
that acts as a forcing function on and hence contributes to the dynamics produced on the next pass.

The repetitive process setting for ILC design has progressed through to experimental verification [4]. Design in this setting is a one step
process where the control law includes stabilization of the state dynamics on each trial. Also the design methods extend naturally to robust
control design where, unlike the lifted setting, matrices formed as the product of nominal state-space model matrices and those from the
uncertainty description are always excluded. Moreover, ILC design in this setting transfers directly to differential dynamics, i.e., to cases
where design by emulation is the only or preferred setting for analysis and design.

In many industrial processes, time-delays often occur, e.g., in the transmission of material or information between different parts of a
system, which, if not subject to compensation, can cause serious deterioration of the stability and performance. Chemical processes are a
common industrial source of time-delay systems and there has been research on ILC design for such systems by treating them as differential
batch processes over a finite time on each trial. For example, a robust 2D ILC law combined with the output feedback has been applied to
batch processes with state delay and time-varying uncertainties [14].

Industrial control systems usually operate under challenging conditions, which expose the system to faults that, in turn, can cause loss,
or serious degradation, of stability and/or performance. Moreover, ILC schemes could be especially sensitive to faults due to the repeated
nature of the demand on the control actuator. For such cases, a fault tolerant ILC design is required. Of course, this problem arises in the
non-ILC case, see, e.g., [15], where necessary and sufficient conditions for stabilization while retaining a desirable level of the closed-loop
performance in the presence of actuator/sensor faults or failures, and also plant-model mismatches, are given.

The design of ILC laws for monotonic trial-to-trial error convergence together with controlled dynamics along the trials, in the SISO case
for simplicity, requires frequency attenuation over the complete spectrum. This could be very difficult to enforce in some cases and also
in many practical examples, systems properties need only be enforced over finite frequency ranges. Moreover, in other examples it will
be required to impose different specifications over finite frequency ranges. One way of solving these problems is to use the generalized
Kalman–Yakubovich–Popov (KYP) lemma, see, e.g., [16] for discrete systems with experimental verification in the absence of time delays
and no compensation for possible faults. The corresponding results for differential linear systems are given in [17].

This paper develops new results for ILC design applied to differential linear systems with time-delays with the following novel contrib-
utions:

• the finite frequency range ILC law design is extended to the fault tolerant control problem for differential linear time-delay batch processes
with actuator faults;

• monotonic trial-to-trial error convergence conditions for the controlled ILC dynamics are derived;
• the extension to robust control against structured uncertainty.

This paper is organized as follows: Section 2 describes a class of differential linear batch processes in the state-space form with actuator
faults and a time-delay in the state. Also the ILC design problem is formulated in an equivalent differential linear repetitive process setting. In
Section 3, the corresponding fault tolerant ILC law is designed and sufficient conditions for its existence are developed in terms of generalized
KYP lemma  and LMIs constraints, which ensure that the nominal and uncertain controlled dynamics are monotonically convergent and
stable over a finite frequency range. Section 4 illustrates the feasibility and effectiveness of the new design by a simulation-based application
to a two-stage chemical reactor with delayed recycle streams. Finally, the main results are summarized in Section 5 together with some
possible areas for further research.

Throughout this paper, the null and identity matrices with the required dimensions are denoted by 0 and I, respectively, and the notation
X ≺ Y (respectively X � Y) is used to represent the negative definite (respectively, positive definite) matrix X − Y . The notation (�) denotes
transposed elements in a symmetric matrix and �(·) denotes the spectral radius of its matrix argument, i.e., if �i, 1 ≤ i ≤ q, denote the
eigenvalues of a q × q matrix, say H, �(H) = max1≤i≤q|�i|. The symbol diag{X1, X2, . . .,  Xn} denotes a block diagonal matrix with diagonal
blocks X1, X2, . . .,  Xn and sym(�) = � + �T, ⊗ denotes the Kronecker matrix product, the superscript * denotes the complex conjugate
transpose of a matrix.

The following lemmas are used in the proofs of the main results.

Lemma  1. [18] Given matrices X, Y, � = �T and �(t) of compatible dimensions,

� + X�(t)Y + YT �T (t)XT ≺ 0, (1)

for all �(t) satisfying �T(t)�(t) � I if and only if there exists an ε > 0 such that

� + εXXT + ε−1YT Y ≺ 0. (2)
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