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Motivated by the recent growing interest in pairwise learning problems, we study the generalization per-
formance of Online Pairwise IEaRning Algorithm (OPERA) in a reproducing kernel Hilbert space (RKHS)
without an explicit regularization. The convergence rates established in this paper can be arbitrarily
closed to O(T-7) within T iterations and largely improve the existing convergence rates for OPERA. Our
novel analysis is conducted by showing an almost boundedness of the iterates encountered in the learn-
ing process with high probability after establishing an induction lemma on refining the RKHS norm esti-

: mate of the iterates.
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1. Introduction

Machine learning often refers to a process of inferring the rela-
tionship underlying some examples {z; = (xt,yt)}tT:1 drawn from
a probability measure p defined over Z := X x Y with a com-
pact input space X cRY and an output space Y c R. For many
machine learning problems, the relationship can be expressed by
a function from X to ) and the quality of a model f:X — R
can be quantified by a local error V(y, f(x)) induced by a func-
tion V: R x R — R,. For example, a binary classification problem
aims to build a classifier f from & to Y = {£1} and typical choices
of V include the zero-one loss V(y, a) = 1,40y and its surrogates
V(y,a) = ¢(ya) with a convex nonnegative function ¢. Here 1.,
is the indicator function. Regression problems aim to estimate the
output value y by a function f: X — Y and the quality of f at (x,
y) can be measured by an increasing function of the discrepancy
between f(x) and y. We refer to these learning problems as “point-
wise learning” since the local error V(y, f{x)) only involves a single
example z = (x,y) € Z.

Recently, there is growing interest in another important class of
learning problems which we refer to as “pairwise learning” prob-
lems. For pairwise learning problems, the associated local error de-
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pends on a pair of examples z= (x,y),Z= (%, ¥) and we wish to
build an estimator f: X x X — R. To be precise, the local error of
fat (z,2) can be typically quantified by V(r(y,7), f(x, %)), where
r: Y xY — Ris a reducing function whose specific realization de-
pends on the application domain. Many machine learning prob-
lems can be incorporated into the framework of pairwise learn-
ing by choosing appropriate reducing functions r and loss functions
V, including ranking [6,23], similarity and metric learning [2,4,11],
AUC maximization [32], gradient learning [22] and learning un-
der minimum error entropy criterion [8,13,14]|. For example, the
problem of ranking aims to learn a good order f: X x X — R be-
tween z and Z such that we predict y < ¥ if f(x,%) < 0. The local
error of f at (z,Z) can be naturally quantified by 1y¢,_y) fx <0}
which is of the form V(r(y,), f(x,%)) by taking V(r, a) = 1(;4.q
and r(y,j) =y —J. A convex surrogate of this 0 — 1 loss is the
so-called least squares ranking loss VS9(r(y,y), f(x, X)) := (|y — ¥ -

sgn(y — ) (F(x) —f()?)))2 studied in [1,3,34,36], where sgn(a) de-
notes the sign of a € R.

Training examples in some machine learning problems become
available in a sequential manner. Online learning provides an effi-
cient method to handle these learning tasks by iteratively updating
the model f; upon the arrival of an example z; = (x¢,y¢).t € N. As
the counterpart of batch learning which handles training samples
at the same time, online learning enjoys an additional advantage
in computational efficiency. This computational advantage is espe-
cially appealing in the pairwise learning context since the objec-
tive function for batch pairwise learning over T examples involves
O(T?) terms. Motivated by these observations, the generalization
analysis of online pairwise learning has recently received consid-
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erable attention [3,12,15,18,29,34]. In particular, an error bound of
the order O(T’% log T) was established in [34] for an Online Pair-
wise 1EaRning Algorithm (OPERA) in a reproducing kernel Hilbert
space (RKHS) after T iterations. Unlike existing work requiring the
iterates to be restricted to a bounded domain or the loss function
to be strongly convex [15,29], OPERA is implemented in an RKHS,
without constraints on the iterates, to minimize a non-strongly
convex objective function. This paper aims to refine these theo-
retical results. To be precise, we give an error bound of the order
arbitrarily closed to O(T*%) for OPERA in [34]. This improvement
is achieved by establishing the “boundedness” of iterates encoun-
tered in the learning process, which was shown to grow polynomi-
ally with respect to the iteration number in [34]. Our novel anal-
ysis is based on an induction lemma showing that {f; [T=1 would
belong to a ball of radius O(t*~") with high probability if one can
show that it belongs to a ball of radius O(t*), where v is a positive
constant depending only on the step size sequence. The “bounded-
ness” of iterates can then be derived by applying repeatedly this
induction lemma.

2. Main results

Throughout this paper, we assume that the training examples
{zt = (X¢,yt)}ten are independently drawn from p in an online
manner. We consider online pairwise learning in an RKHS defined
on the product space X2 = X x X. Let K : X2 x X2 — R be a Mer-
cer kernel, i.e., a continuous, symmetric and positive semidefinite
kernel. The associated RKHS #y is defined as the completion of the
linear combination of functions {K & (-) := K((x,%), (-,)) : (x,%) €
X2} under an inner product satisfying the following reproducing
property

(Kixz)8) =g(x.%), Vx,XeX and g e Hy.
Denote « :=supy gy /K((x,X), (x,%)), and throughout the paper

we assume that |y| <M almost surely for some M > 0.

We study a specific pairwise learning problem with the local er-
ror taking the least squares form V(r(y,¥), f(x,%)) = (f(x,X) —y +
7)2, which coincides with the least squares ranking loss V59 with
applications to ranking problems [1] if y # J. These two loss func-
tions would be identical almost surely if the set {(z,2) e Zx Z:
y =¥} is of measure zero under the probability measure p x p. For
this specific pairwise learning problem studied in [3,34,36], an ef-
ficient OPERA starting with f; = f, = 0 was introduced in [34] as
follows

Y t-1
feo1 = fe — —1 Z (.ft(xtvxj) =Yt +J’j)K(xt,xj)s t=2,3,....
j=1
(2.1)
Here {y; > 0:t € N} is usually referred to as the sequence of step
sizes. This paper only considers polynomially decaying step sizes
of the form y = £ with 0 ¢ (3.1) and w>«?2, which implies

M
yik2<1forallteN.

The generalization error of a function f: X x X — R is defined
by

£(f) = / /Z D) =y + o )dp ().

Define the pairwise regression function f~p as the difference between
two standard regression functions

Fo®) = ) — f,®). fox) = fX ydp ).

We denote L%(XZ) the space of square integrable functions on the
domain & x X, ie.,

L%(Xz)z{f:XxXeRZHf“p

where py is the marginal distribution of p over X. Analogous to
the standard least square regression problem [7], the following
identity holds for any f € L2 (x?) [13,34]

N —&(fp) = I1F = F,lI2,

from which we also see clearly that fp minimizes the functional
£(-) among all measurable functions.

Our generalization analysis requires a standard regularity as-
sumption on the pairwise regression function in terms of the in-
tegral operator Ly : L2(X?) — L2(x?) defined by

(2.2)

Lef = / /X  JRK s dp () ().

The integral operator Ly is compact and positive since K is a Mercer
kernel, from which the fractional power Lg (B >0) can be well de-
fined by L f =%, Afa;y; for f= Y2, ;1 < [2(¥?), where
{A;}jen are the positive eigenvalues and {v;};cy are the associated

1
orthonormal eigenfunctions. Furthermore, we know L? (L2 (X?)) =
‘Hi with the norm satisfying

llgllk = ||L,2%g| Vg € H.

o’
Here Lﬁ (L2(x%)) = {Lﬁf : fel2(x?)} for any B> 0. Throughout
this paper, we always assume the existence of an f* € Hy such that
f* = argming,, £(f), which implies that

VEE) = [[ (P00 -y +)Kendox o)
=L(f - f,) =0. (2.3)

where V is the gradient operator. This assumption, weaker than
assuming f, € Hg, was also imposed in the literature, see, e.g.,
[5,35]. The following theorem to be proved in Section 4.3 estab-
lishes learning rates for the last iterate fr, ; generated by OPERA.
For any a € R, let |a| and [a] denote the largest integer not larger
than a and the smallest integer not smaller than a, respectively.

Theorem 1. Let {f; :t e N} be given by OPERA. Suppose fpe

Lﬁ(L%(Xz)) with some B>0. For any 0<§8 <1, with probability
1 — 4, there holds

e
~ L ) Tl'zle%g] 201
E(fra) — £(fp) = CT-min@ADA=H) log —=——

T
5

where C is a constant independent of T and 6.

log2 log3 (eT),

Our proof of Theorem 1 is based on the following key observa-
tion to be proved in Section 4.2 on the boundedness of {f; rT=1 (up
to factors log T) with high probability.

Proposition 2. Let {f; :t € N} be given by OPERA and assume
yk2 <1 for any t e N. Then for any §<(0, 1), with probability at
least 1 — &, the following inequality holds for all t =2,...,T
1-6

351 log(eT),

~r 8T
Il fellc = C[log % + 1] (2.4)

where C is a constant independent of T and 6.
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