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a b s t r a c t 

Motivated by the recent growing interest in pairwise learning problems, we study the generalization per- 

formance of Online Pairwise lEaRning Algorithm (OPERA) in a reproducing kernel Hilbert space (RKHS) 

without an explicit regularization. The convergence rates established in this paper can be arbitrarily 

closed to O (T −
1 
2 ) within T iterations and largely improve the existing convergence rates for OPERA. Our 

novel analysis is conducted by showing an almost boundedness of the iterates encountered in the learn- 

ing process with high probability after establishing an induction lemma on refining the RKHS norm esti- 

mate of the iterates. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Machine learning often refers to a process of inferring the rela- 

tionship underlying some examples { z t = (x t , y t ) } T t=1 drawn from 

a probability measure ρ defined over Z := X × Y with a com- 

pact input space X ⊂ R 

d and an output space Y ⊂ R . For many 

machine learning problems, the relationship can be expressed by 

a function from X to Y and the quality of a model f : X → R 

can be quantified by a local error V ( y, f ( x )) induced by a func- 

tion V : R × R → R + . For example, a binary classification problem 

aims to build a classifier f from X to Y = {±1 } and typical choices 

of V include the zero-one loss V (y, a ) = 1 { ya< 0 } and its surrogates 

V (y, a ) = φ(ya ) with a convex nonnegative function φ. Here 1 { · } 

is the indicator function. Regression problems aim to estimate the 

output value y by a function f : X → Y and the quality of f at ( x, 

y ) can be measured by an increasing function of the discrepancy 

between f ( x ) and y . We refer to these learning problems as “point- 

wise learning” since the local error V ( y, f ( x )) only involves a single 

example z = (x, y ) ∈ Z . 

Recently, there is growing interest in another important class of 

learning problems which we refer to as “pairwise learning” prob- 

lems. For pairwise learning problems, the associated local error de- 
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pends on a pair of examples z = (x, y ) , ̃  z = ( ̃  x , ̃  y ) and we wish to 

build an estimator f : X × X → R . To be precise, the local error of 

f at (z, ̃  z ) can be typically quantified by V (r(y, ̃  y ) , f (x, ̃  x )) , where 

r : Y × Y → R is a reducing function whose specific realization de- 

pends on the application domain. Many machine learning prob- 

lems can be incorporated into the framework of pairwise learn- 

ing by choosing appropriate reducing functions r and loss functions 

V , including ranking [6,23] , similarity and metric learning [2,4,11] , 

AUC maximization [32] , gradient learning [22] and learning un- 

der minimum error entropy criterion [8,13,14] . For example, the 

problem of ranking aims to learn a good order f : X × X → R be- 

tween z and ˜ z such that we predict y ≤ ˜ y if f (x, ̃  x ) ≤ 0 . The local 

error of f at (z, ̃  z ) can be naturally quantified by 1 { (y − ˜ y ) f (x, ̃ x ) < 0 } , 
which is of the form V (r(y, ̃  y ) , f (x, ̃  x )) by taking V (r, a ) = 1 { ra< 0 } 
and r(y, ̃  y ) = y − ˜ y . A convex surrogate of this 0 − 1 loss is the 

so-called least squares ranking loss V sq (r(y, ̃  y ) , f (x, ̃  x )) := 

(| y − ˜ y | −
sgn 

(
y − ˜ y 
)(

f (x ) − f ( ̃  x ) 
))2 

studied in [1,3,34,36] , where sgn( a ) de- 

notes the sign of a ∈ R . 

Training examples in some machine learning problems become 

available in a sequential manner. Online learning provides an effi- 

cient method to handle these learning tasks by iteratively updating 

the model f t upon the arrival of an example z t = (x t , y t ) , t ∈ N . As 

the counterpart of batch learning which handles training samples 

at the same time, online learning enjoys an additional advantage 

in computational efficiency. This computational advantage is espe- 

cially appealing in the pairwise learning context since the objec- 

tive function for batch pairwise learning over T examples involves 

O ( T 2 ) terms. Motivated by these observations, the generalization 

analysis of online pairwise learning has recently received consid- 
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erable attention [3,12,15,18,29,34] . In particular, an error bound of 

the order O (T −
1 
3 log T ) was established in [34] for an Online Pair- 

wise lEaRning Algorithm (OPERA) in a reproducing kernel Hilbert 

space (RKHS) after T iterations. Unlike existing work requiring the 

iterates to be restricted to a bounded domain or the loss function 

to be strongly convex [15,29] , OPERA is implemented in an RKHS, 

without constraints on the iterates, to minimize a non-strongly 

convex objective function. This paper aims to refine these theo- 

retical results. To be precise, we give an error bound of the order 

arbitrarily closed to O (T −
1 
2 ) for OPERA in [34] . This improvement 

is achieved by establishing the “boundedness” of iterates encoun- 

tered in the learning process, which was shown to grow polynomi- 

ally with respect to the iteration number in [34] . Our novel anal- 

ysis is based on an induction lemma showing that { f t } T t=1 
would 

belong to a ball of radius O (t α−ν ) with high probability if one can 

show that it belongs to a ball of radius O ( t α), where ν is a positive 

constant depending only on the step size sequence. The “bounded- 

ness” of iterates can then be derived by applying repeatedly this 

induction lemma. 

2. Main results 

Throughout this paper, we assume that the training examples 

{ z t = (x t , y t ) } t∈ N are independently drawn from ρ in an online 

manner. We consider online pairwise learning in an RKHS defined 

on the product space X 

2 = X × X . Let K : X 

2 × X 

2 → R be a Mer- 

cer kernel, i.e., a continuous, symmetric and positive semidefinite 

kernel. The associated RKHS H K is defined as the completion of the 

linear combination of functions { K (x, ̃ x ) (·) := K((x, ̃  x ) , (·, ·)) : (x, ̃  x ) ∈ 

X 

2 } under an inner product satisfying the following reproducing 

property 〈
K (x, ̃ x ) , g 

〉
= g(x, ̃  x ) , ∀ x, ̃  x ∈ X and g ∈ H K . 

Denote κ := sup x, ̃ x ∈X 
√ 

K((x, ̃  x ) , (x, ̃  x )) , and throughout the paper 

we assume that | y | ≤ M almost surely for some M > 0. 

We study a specific pairwise learning problem with the local er- 

ror taking the least squares form V (r(y, ̃  y ) , f (x, ̃  x )) = ( f (x, ̃  x ) − y + 

˜ y ) 2 , which coincides with the least squares ranking loss V 

sq with 

applications to ranking problems [1] if y � = ˜ y . These two loss func- 

tions would be identical almost surely if the set { (z, ̃  z ) ∈ Z × Z : 

y = ˜ y } is of measure zero under the probability measure ρ ×ρ . For 

this specific pairwise learning problem studied in [3,34,36] , an ef- 

ficient OPERA starting with f 1 = f 2 = 0 was introduced in [34] as 

follows 

f t+1 = f t − γt 

t − 1 

t−1 ∑ 

j=1 

(
f t (x t , x j ) − y t + y j 

)
K (x t ,x j ) , t = 2 , 3 , . . . . 

(2.1) 

Here { γt > 0 : t ∈ N } is usually referred to as the sequence of step 

sizes. This paper only considers polynomially decaying step sizes 

of the form γt = 

t −θ

μ with θ ∈ 

(
1 
2 , 1 
)

and μ≥κ2 , which implies 

γ t κ2 ≤ 1 for all t ∈ N . 

The generalization error of a function f : X × X → R is defined 

by 

E( f ) = 

∫ ∫ 
Z×Z 

( f (x, ̃  x ) − y + 

˜ y ) 
2 
d ρ(x, y ) d ρ( ̃  x , ̃  y ) . 

Define the pairwise regression function ˜ f ρ as the difference between 

two standard regression functions 

˜ f ρ(x, ̃  x ) = f ρ (x ) − f ρ ( ̃  x ) , f ρ (x ) = 

∫ 
X 

ydρ(y | x ) . 
We denote L 2 ρ (X 

2 ) the space of square integrable functions on the 

domain X × X , i.e., 

L 2 ρ (X 

2 ) = 

{ 
f : X × X → R : ‖ f‖ ρ

= 

(∫ ∫ 
X×X 

| f (x, ̃  x ) | 2 dρX (x ) dρX ( ̃  x ) 
) 1 

2 

< ∞ 

} 
, 

where ρX is the marginal distribution of ρ over X . Analogous to 

the standard least square regression problem [7] , the following 

identity holds for any f ∈ L 2 ρ (X 

2 ) [13,34] 

E( f ) − E 
(˜ f ρ
)

= ‖ f − ˜ f ρ‖ 

2 
ρ, (2.2) 

from which we also see clearly that ˜ f ρ minimizes the functional 

E(·) among all measurable functions. 

Our generalization analysis requires a standard regularity as- 

sumption on the pairwise regression function in terms of the in- 

tegral operator L K : L 
2 
ρ (X 

2 ) → L 2 ρ (X 

2 ) defined by 

L K f = 

∫ ∫ 
X×X 

f (x, ̃  x ) K (x, ̃ x ) dρX (x ) dρX ( ̃  x ) . 

The integral operator L K is compact and positive since K is a Mercer 

kernel, from which the fractional power L 
β
K 

( β > 0) can be well de- 

fined by L 
β
K 

f = 

∑ ∞ 

j=1 λ
β
j 
α j ψ j for f = 

∑ ∞ 

j=1 α j ψ j ∈ L 2 ρ (X 

2 ) , where 

{ λ j } j∈ N are the positive eigenvalues and { ψ j } j∈ N are the associated 

orthonormal eigenfunctions. Furthermore, we know L 
1 
2 
K 
(L 2 ρ (X 

2 )) = 

H K with the norm satisfying 

‖ g‖ K = 

∥∥L − 1 
2 

K 
g 
∥∥

ρ
, ∀ g ∈ H K . 

Here L 
β
K 
(L 2 ρ (X 

2 )) = { L β
K 

f : f ∈ L 2 ρ (X 

2 ) } for any β > 0. Throughout 

this paper, we always assume the existence of an f ∗ ∈ H K such that 

f ∗ = arg min f∈H K 
E( f ) , which implies that 

1 

2 

∇E( f ∗) = 

∫ ∫ 
Z×Z 

(
f ∗(x, ̃  x ) − y + 

˜ y 
)
K (x, ̃ x ) d ρ(x, y ) d ρ( ̃  x , ̃  y ) 

= L K 
(

f ∗ − ˜ f ρ
)

= 0 , (2.3) 

where ∇ is the gradient operator. This assumption, weaker than 

assuming ˜ f ρ ∈ H K , was also imposed in the literature, see, e.g., 

[5,35] . The following theorem to be proved in Section 4.3 estab- 

lishes learning rates for the last iterate f T +1 generated by OPERA. 

For any a ∈ R , let 
 a � and � a � denote the largest integer not larger 

than a and the smallest integer not smaller than a , respectively. 

Theorem 1. Let { f t : t ∈ N } be given by OPERA. Suppose ˜ f ρ ∈ 

L 
β
K 
(L 2 ρ (X 

2 )) with some β > 0 . For any 0 < δ < 1, with probability 

1 − δ, there holds 

E( f T +1 ) − E 
(

˜ f ρ
)

≤ C̄ T − min ( 2 β, 1 ) (1 −θ ) 

( 
log 

T 
⌈

1 −θ
2 θ−1 

⌉
δ

) ⌈ 2 −2 θ
2 θ−1 

⌉

log 
2 T 

δ
log 

3 
(eT ) , 

where C̄ is a constant independent of T and δ. 

Our proof of Theorem 1 is based on the following key observa- 

tion to be proved in Section 4.2 on the boundedness of { f t } T t=1 
(up 

to factors log T ) with high probability. 

Proposition 2. Let { f t : t ∈ N } be given by OPERA and assume 

γ t κ2 ≤ 1 for any t ∈ N . Then for any δ ∈ (0, 1), with probability at 

least 1 − δ, the following inequality holds for all t = 2 , . . . , T 

‖ f t ‖ K ≤ ˜ C 

[ 
log 

8 T � 1 −θ
2 θ−1 

� 
δ

+ 1 

] ⌈ 1 −θ
2 θ−1 

⌉
log (eT ) , (2.4) 

where ˜ C is a constant independent of T and δ. 
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