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a b s t r a c t 

With the explosive growth in size of datasets, it becomes more significant to develop effective learning 

schemes for neural networks to deal with large scale data modelling. This paper proposes an iterative 

approximate Newton-type learning algorithm to build neural networks with random weights (NNRWs) 

for problem solving, where the whole training samples are divided into some small subsets under certain 

assumptions, and each subset is employed to construct a local learner model for integrating a unified 

classifier. The convergence of the output weights of the unified learner model is given. Experimental 

results on UCI datasets with comparisons demonstrate that the proposed algorithm is promising for large 

scale datasets. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Gradient-based optimization methods, such as back-propagation 

algorithm (BP), usually suffer from local minima, slow conver- 

gence, and the sensitive setting of the learning rate. Alternatively, 

Schmidt, Kraaijveld, and Duin (1992) proposed feedforward neu- 

ral networks with random weights (NNRWs), where the input 

weights and biases are assigned randomly with uniform distribu- 

tion in [ −1 , 1] , and the output weights can be determined ana- 

lytically by using the well-known least squares method. Such a 

randomized learner model was not proposed as a working algo- 

rithm, but simply as a simple idea to investigate some character- 

istics of the feedforward neural networks. Theoretically, it is evi- 

dent that such a way to randomly assign the input weights and 

biases in [ −1 , 1] cannot guarantee the universal approximation ca- 

pability ( Li & Wang, 2016; Wang & Li, 2017 ). Thus, statements on 

its approximation capability and good generalization in the liter- 

ature are all misleading and lack scientific justification. A simi- 

lar idea was proposed by Pao’s group ( Pao & Takefuji, 1992 ) and 

they termed such randomized learning models as random vec- 

tor functional-link nets (RVFLs). In Igelnik and Pao (1995) , the- 

oretical justification on the universal approximation capability of 

RVFLs was established, where the scope of randomly assigned in- 
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put weights and biases is specified in a constructive manner. Re- 

cently, some advanced randomized learning algorithms have been 

developed in Cao, Tan, and Cai (2014) , Scardapane, Wang, Panella, 

and Uncini (2015) , and Cao, Ye, and Wang (2015) . Further, a com- 

plete exposition on randomized methods for neural networks has 

been published in Scardapane and Wang (2017) . A substantial ad- 

vancement of randomized methods for the development of neural 

networks was presented by Wang and Li (2017) , where a constraint 

on the random weights and biases depending on data was pro- 

posed to ensure the universal approximation property. However, it 

has been aware that the way of computing the output weights in 

NNRW model is time-consuming and even does not work on desk- 

top computers as the size of data samples or the number of nodes 

at the hidden layer of neural networks become very large. 

Over the past decades, there have been a lot of researches on 

large scale data modelling problems. Perhaps the simplest strategy 

for dealing with large scale datasets is to reduce the size of dataset 

by subsampling. This idea behind this approach is to decompose 

the problem into a series of smaller tasks. Indeed, this decompo- 

sition method was firstly proposed by Osuna, Freund, and Girosi 

(1997a,b) , followed by Lu and Ito (1999) for solving pattern classi- 

fication problem. Some improved methods on support vector ma- 

chines (SVMs) with the decomposition scheme were proposed to 

deal with large scale data and successfully applied for data regres- 

sion and classification ( Collobert & Bengio, 2001; Collobert, Bengio, 

& Bengio, 2002; Dong, Krzyzak, & Suen, 2005; Flake & Lawrence, 

2002; Hsieh, Chang, Lin, Keerthi, & Sundararajan, 2008; Tsang, 
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Kwok, & Cheung, 2005 ). Tresp et al. ( Schwaighofer & Tresp, 2001; 

Tresp, 20 0 0 ) proposed the Bayesian committee SVM to process the 

large scale data, where the dataset was divided into some subsets 

of the same size and some models were derived from the individ- 

ual sets. But the condition was that these subsets must be pairwise 

independent. Furthermore, some other large scale datasets train- 

ing methods based on the decomposition techniques exist in ma- 

chine learning such as stochastic gradient methods ( Mu, Liu, Liu, 

& Fan, 2017; Zhang, 2004 ), a first-order approach ( Duchi, Shalev- 

Shwartz, Singer, & Tewari, 2010 ) and greedy column subset se- 

lection method ( Farahat, Elgohary, Ghodsi, & Kamel, 2015 ). Also, 

various ensemble learning techniques have been developed, and 

many interesting ideas and theoretical works, including bagging, 

boosting and random forests can be found in Breiman (1996) , 

Breiman (2001) , Zhang and Ma (2012) , Onan, Koruko ̆glu, and Bu- 

lut (2016) , Li and Wang (2016) , Gonález, Dominguez, Sánchez, 

and B (2017) , Wei et al. (2017) , Liu, Ouyang, and Li (2017) , and 

Wang and Cui (2017) . These methods are always related to large 

scale data modeling problems and share some common nature in 

system design, such as data sampling and the output integration. 

The basis of ensemble learning theory lies in a rational sampling 

implementation for building each learner model, which may pro- 

vide a sound predictability through learning a subset of the whole 

datasets. 

This paper addresses the study on NNRWs models for large 

scale datasets based on decomposition method. Existing common 

method to calculate the large scale data is directly dividing the 

data into a series of small subsets with the same size, and each 

subset is trained by a local learner independently and average the 

overall local solution as global solution. From ( Zinkevich, Weimer, 

Li, & Alex J, 2010 ), we call this approach as One-Shot scheme. Nat- 

urally, if the learner is NNRW, then we term the approach as One- 

Shot NNRW. 

This work is built on a framework proposed by Shamir, Sre- 

bro, and Zhang (2014) . Our goal is to offer an iterative solution 

for building randomized learner models with large scale datasets. 

Specifically, we present an iterative method for NNRW based on 

approximate Newton-type method (ANE-NNRW), and develop an 

efficient ANE-NNRW iterative algorithm and its convergence. More- 

over, we make some comparative studies on several benchmark 

to explore the usefulness, effectiveness, and efficiency of the pro- 

posed algorithm. 

The rest of this paper is organized as follows. Section 2 briefly 

reviews some basic concepts on NNRW and its vari- 

ant. Section 3 details the proposed ANE-NNRW algorithm. 

Section 4 provides an analysis on the convergence of ANE-NNRW. 

Section 5 evaluates the algorithm performance with comparisons. 

Section 6 concludes this paper with some remarks. Mathematical 

proofs are given in the appendix. 

2. Preliminary 

2.1. Revisit of neural networks with random weights 

Feedforward neural networks (FNNs) have been widely applied 

in many fields ( Erkaymaz, Ozer, & Perc, 2017; Ozer, Perc, Uzuntarla, 

& Koklukaya, 2010 ). FNNs with single hidden layer can be mathe- 

matically described as 

G N (x ) = 

N ∑ 

i =1 

βi g ( 〈 ω i , x 〉 + b i ) , (1) 

where N is the number of hidden nodes, x = [ x 1 , x 2 , . . . , x d ] 
� ∈ R 

d 

is the input, g is the activation function, b i ∈ R is the bias, ω i = 

[ ω i 1 , ω i 2 , . . . , ω id ] ∈ R 

d and β i ∈ R are the input and output weights 

Fig. 1. The relationship between local models f s i (β)(i = 1 , 2 , . . . , m ) and global 

model f s ( β). Actually, for a large scale dataset, it can be separated into m small sub- 

sets given by s = { s 1 , s 2 , . . . , s m } and m submodels are derived from the individual 

subsets. 

connecting the i th hidden node and the output node, respectively, 

and 〈 ω i , x 〉 = 

∑ d 
j=1 ω i j x j denotes the Euclidean inner product. 

For a set of training samples s = { (x j , t j ) : x j ∈ R 

d , t j ∈ R , j = 

1 , 2 , . . . , M} , let β = [ β1 , β2 , . . . , βN ] 
� , T = [ t 1 , t 2 , . . . , t M 

] � , and 

H = 

⎡ 

⎣ 

g(〈 ω 1 , x 1 〉 + b 1 ) . . . g(〈 ω N , x 1 〉 + b N ) 
. . . . . . 

. . . 
g(〈 ω 1 , x M 

〉 + b 1 ) . . . g(〈 ω N , x M 

〉 + b N ) 

⎤ 

⎦ . (2) 

If the input weights and biases are assigned randomly with uni- 

form distribution, then the output weights can be determined an- 

alytically by using the well-known least-squares method: 

min 

β∈ R N 
{‖ H β − T ‖ 

2 
2 } . (3) 

which gives β = H 

† T , where H 

† = (H 

� H ) −1 H 

� is the Moore–

Penrose generalized inverse of H ( Rao & Mitra, 1971 ). 

Nevertheless, the least squares problem is usually ill-posed. 

So one can employ the following � 2 regularization method 

( Tikhonov, 1963 ) to find the solution, i.e., 

min 

β∈ R N 
{‖ H β − T ‖ 

2 
2 + μ‖ β‖ 

2 
2 } , (4) 

where μ> 0 is a positive constant called the regularizing factor. 

This model is referred as � 2 -NNRW and can improve the stabil- 

ity on the solution of NNRW ( Cao, Wang, Zhu, & Wang, 2016; Cao 

et al., 2015 ). If μ is given such that H 

� H + μI is invertible, then 

the minimizer of (4) is easily described as 

β = (H 

� H + μI ) −1 H 

� T , (5) 

where I denotes the identity matrix. 

Unfortunately, when the size of data samples or the number of 

hidden nodes becomes rather large, the computation of the inverse 

matrix in (3) and (4) is time-consuming and even ineffective. Ac- 

cordingly, it is essential to develop fast and effective schemes for 

large scale datasets. 

2.2. Decomposition model of neural networks with random weights 

As mentioned before, it is not suitable to train large scale data 

for traditional NNRW method. One common approach is data de- 

composition, which can facilitate the difficulty resolved by break- 

ing the data up into smaller ones and solving each of the smaller 

ones separately (see Fig. 1 ). 

It is observed from Fig. 1 that the large scale dataset with M 

samples will be decomposed into m small subsets denoted by s = 

{ s 1 , s 2 , . . . , s m 

} and m submodels are derived from the individual 

subsets. Indeed, this data decomposition method should have some 

prior assumptions before learning. Firstly, each small subset should 
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