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a b s t r a c t 

A number of machine learning and knowledge-based algorithms are using a metric, or a distance, in 

order to compare individuals. The Euclidean distance is usually employed, but it may be more efficient 

to learn a parametric distance such as Mahalanobis metric. Learning such a metric is a hot topic since 

more than ten years now, and a number of methods have been proposed to efficiently learn it. How- 

ever, the nature of the problem makes it quite difficult for large scale data, as well as data for which 

classes overlap. This paper presents a simple way of improving accuracy and scalability of any iterative 

metric learning algorithm, where constraints are obtained prior to the algorithm. The proposed approach 

relies on a loss-dependent weighted selection of constraints that are used for learning the metric. Using 

the corresponding dedicated loss function, the method clearly allows to obtain better results than state- 

of-the-art methods, both in terms of accuracy and time complexity. Some experimental results on real 

world, and potentially large, datasets are demonstrating the effectiveness of our proposition. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The concepts of distance (or norm) and similarity are essentials 

in machine learning, data mining and pattern recognition methods, 

and more generally in all applications where data is used for anal- 

ysis and decision making. In particular, observations are grouped 

together depending on this measure in clustering, or compared to 

prototypes in classification. However, it is also well known that 

these measures are highly dependent of the data distribution in 

the feature space [32] . Historically, methods that are taking this 

distribution (or manifold) into account are unsupervised (i.e. no 

class labels are available). Their objective is to project the data into 

a new space (whose dimension may be lower, for dimensionality 

reduction, or potentially larger, through kernelization, for finding 

a separating hyperplane) in which usual machine learning meth- 

ods are used. The first, most established and widely used method 

is certainly the Principal Component Analysis. In this kind of ap- 

proach, called manifold learning , the objective is to preserve the 

geometric properties of the original feature space while decreas- 

ing its dimension so as to obtain a useful projection of the data 

in a lower dimensional manifold, refer to e.g. MDS, ISOMAP, LLE, 

SNE (see [34] and references therein), or more recently t-SNE [33] , 

a Student-based variation of SNE. 

Thereafter, class label information has been used in order to 

guide this projection, particularly by focusing on easing the predic- 

tion task (see e.g. Fisher linear discriminant analysis and its vari- 
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ants for dimension reduction [31] ). Here again, the objective is to 

project the data into a new space that is a linear combination of 

the original features. 

More recently, researchers tried to directly learn the distance 

(or similarity) measure in the original feature space, without pro- 

jection. 1 

As opposed to manifold learning, which is unsupervised, met- 

ric learning uses some background (or side) information. For in- 

stance, in the seminal paper of Xing et al. [38] , the metric learn- 

ing problem has been formulated as an optimization problem with 

constraints. The basic assumption behind this formulation is that 

the distance between similar objects should be smaller than the 

distance between different objects. Therefore, we generally con- 

sider whether pairs or triplets of observations as the constraints of 

the optimization problem. More formally, given two observations 

x i and x j lying in R 

p , one wants to minimize the distance d ( x i , x j ) 

if these two observations are considered as similar, and maximize 

the distance if they are considered as dissimilar [38] . Alternatively, 

if the constraints are under the form of triplets of observations, we 

may minimize the distance d ( x i , x j ) between similar objects and 

maximize the distance d ( x i , x k ) between dissimilar objects, as in 

[6] . 

Depending on the application, similar and dissimilar objects can 

be obtained through their class labels for supervised problems, 

1 We will see that in fact, using a Mahalanobis distance is equivalent to perform 

a linear projection of the data, and then compute the Euclidean distance in this 

new space. 
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or with must-link and cannot-link, or side information for semi- 

supervised problems [38] . This information can also be obtained 

interactively with the help of the user. In that case, online learning 

algorithms are particularly well suited. 

Due to the ever growing size of available data sets, online met- 

ric learning has also received a lot of interest. As opposed to batch 

learning where the entire learning set is available, online learn- 

ing processes one observation (or pairs, triplets) at a time. Based 

on the output of each iteration, these approaches rely on getting a 

feedback of the quality of the metric (for instance a specified loss), 

and update the model accordingly. This process is repeated until 

convergence of the metric. The results given by these methods are 

not as good as batch algorithms, but allows to tackle larger prob- 

lems [4] . 

The vast majority of metric learning approaches are using, 

as metric, the squared Mahalanobis distance between two p - 

dimensional objects x i and x j defined by 

d 2 A (x i , x j ) = (x i − x j ) 
T A (x i − x j ) (1) 

where A is a p × p positive semi-definite (PSD) matrix. Note that 

if A = I, d 2 
A 

reduces to the squared Euclidean distance. In this set- 

ting, the learning task consists in finding a matrix A that is satis- 

fying some given constraints. In order to ensure that (1) defines a 

proper metric (i.e. a binary function holding the symmetry, trian- 

gle inequality and identity properties), A must remain PSD. Note 

that in the following, we denote this distance as d A ( x i , x j ). Note 

also that the matrix A is often the inverse covariance matrix of the 

data X = { x 1 , · · · , x n } . 
In practice, it may be intractable, so that several solutions have 

been proposed. The first one consists in relaxing the metric con- 

straints. For example, in [4] , the authors use a bilinear similarity 

function defined by s (x i , x j ) = x T 
i 

A x j . In this specific case, A is not 

required to be PSD, so that optimization is facilitated. 

Another solution consists in considering a factorization of A 

as L T L . This decomposition presents two major advantages over 

A . First, the PSD constraint on A is ensured and second, one can 

project the data into a lower dimensional space by using the pro- 

jection matrix L . In particular, if the rank of the matrix A is k , then 

the matrix L ∈ R 

k ×p is used to project the data into a k-dimensional 

space ( k < p ). Indeed, some simple algebraic manipulations show 

that one can write d 2 
A 
(x i , x j ) as ‖ L x i − L x j ‖ 2 . This projection, simi- 

larly to manifold learning, allows to better separate the data for a 

classification task, see an example in Fig. 1 . In this sense, metric 

learning can also be seen as a supervised dimensionality reduc- 

tion technique, and also belongs to the hot topic of representation 

learning. 

One of the most important step in metric learning is to define 

the constraints with respect to the available information (class la- 

bels, relative constraints). 

The vast majority of learning algorithms are choosing the con- 

straints by randomly selecting pairs (or triplets) of observations 

that satisfy the constraint, and then feed this pair (triplet) as a 

constraint into the learning process. However, such random se- 

lection presents several drawbacks. First it may not focus on the 

most important regions of the feature space (e.g. boundary of the 

classes), and second it remains constant over time, without tak- 

ing into account the current metric. Those two aspects must be 

considered for metric learning, and have unfortunately never been 

jointly considered in metric learning algorithms. The objectives of 

this paper are to propose solutions taking into account the two 

limitations of usual approaches. 

In this paper, we propose to dynamically generate the con- 

straints, by setting their weights as a function of the current met- 

ric. This way, constraints will evolve over time, and will be adapted 

to the learned metric. Furthermore, the importance of less satis- 

fied constraints (controlled by a margin) are up-weighted, and well 

satisfied constraints are down-weighted. Such constraints selection 

allows to focus on difficult observations of the feature space (of- 

ten lying at the boundaries of classes), and evolve as the model 

becomes more accurate. Note that the proposed approach is not 

restricted to a particular metric learning algorithm. More precisely, 

it can be used in any iterative metric learning algorithm. 

Before presenting in detail the proposed approach let us briefly 

describe some existing metric learning algorithms. 

2. Metric learning and related works 

2.1. Basic material in metric learning 

The literature on metric learning is continuously growing, so 

that the presentation given here only mentions the most common 

and well known methods. The interested reader can refer to sur- 

veys on this topic, see e.g. [3,15,39] . The general formulation of 

metric learning is to find A such that � (A, C) + λR (A ) , where � is a 

loss function penalizing unsatisfied constraints, C is the set of con- 

straints. λ is a trade-off parameter between regularization and the 

loss, and R ( A ) is a regularizer on A . This model is generally casted 

as a constrained optimization problem 

min R (A ) 

s.t. � (A, i ) ≤ 0 , ∀ i ∈ C 
Large Margin Nearest Neighbors (LMNN, [37] ) is one of the early 

attempts to learn a Mahalanobis distance metric as a convex opti- 

mization problem over the set of PSD matrices. The loss function is 

composed of the linear combination of two terms εpull and εpush . 

The first term aims at penalizing large distances between an ob- 

servation and other observations sharing the same label, while the 

second term objective is to penalize small distances between ob- 

servations from different classes. The loss function is then casted 

as a semidefinite program. Note that there is no regularization 

term in the objective function so that LMNN is prone to overfitting. 

Another well known problem, related to the proposed approach, is 

that the selection of neighbors is initially made using Euclidean 

distance, which may not be adapted. 

Information-Theoretic Metric Learning (ITML, [6,12] ) formulates 

the distance learning problem as that of minimizing the differ- 

ential relative divergence between two multivariate Gaussian dis- 

tribution under constraints on the distance function. In this ap- 

proach, the regularizer R ( A ) is taken as the LogDet divergence be- 

tween successive A t ’s. The main benefit is that it ensures that A 

remains positive semidefinite. Constraints are incorporated through 

slack variables, and the optimal matrix A is obtained by successive 

Bregman projections. 

It is related to an information-theoretic approach, which mean 

that there exists a simple bijection (up to a scaling function) be- 

tween the set of Mahalanobis distances and the set of equal mean 

multivariate Gaussian distributions. 

This method can handle general pairwise constraints, meaning 

it is sufficiently flexible to support a variety of constraints. ITML 

does not require eigenvalue computation or semi-definite program- 

ming, which allows it to be both efficient and fast for many prob- 

lems. However, the computational complexity of updating in this 

algorithm is O ( cp 2 ), the cost increases as the square of the dimen- 

sionality. Therefore, this method is not suitable, at least in place, 

for large-dimensional datasets. 

The Online Algorithm for Scalable Image Similarity (OASIS) 

[4] is an online dual approach using the Passive-Aggressive 

[5] family of learning algorithms. It learns a similarity function 

with a large margin criterion and an efficient hinge loss cost. Its 

goal is to learn a parameterized similarity function of the form 

S W 

(x i , x j ) = x T 
i 
W x j . With this formulation, W plays a similar role 

as A in metric learning. As in the metric learning formulation, the 
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