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a b s t r a c t 

Joint sparsity has attracted considerable attention in recent years in many fields includ- 

ing sparse signal recovery in compressive sensing, statistics, and machine learning. Tradi- 

tional convex models with joint sparsity suffer from the suboptimal performance though 

enjoying tractable computation. In this paper, we propose a new non-convex joint spar- 

sity model, and develop a corresponding multi-stage adaptive convex relaxation algorithm. 

This method extends the idea of iterative support detection (ISD) from the single vector 

estimation to the multi-vector estimation by considering the joint sparsity prior. We pro- 

vide some preliminary theoretical analysis including convergence analysis and a sufficient 

recovery condition. Numerical experiments from both compressive sensing and multi-task 

feature learning show the better performance of the proposed method in comparison with 

several state-of-the-art alternatives. Moreover, we demonstrate that the extension of ISD 

from the single vector to multi-vector estimation is not trivial. While ISD does not well re- 

construct the single channel sparse Bernoulli signal, it does achieve significantly improved 

performance when recovering the multi-channel sparse Bernoulli signal thanks to its abil- 

ity of natural incorporation of the joint sparsity structure. 

© 2017 Published by Elsevier Inc. 

1. Introduction and contributions 

In the last decade, sparsity made it possible for us to reconstruct the high dimensional data with just few samples or 

measurements. The key of the sparse estimation problem is to stress the identification of the support, which denotes the 

indices of the nonzeros. If the support is known, the estimation of the sparse vectors reduces to a standard overdetermined 

linear inverse problem [24] . 

In order to enhance the estimation, many recent studies tend to consider the structure information of the solutions. 

For example, group sparsity structure [8,14] widely appears in many applications [31,32,35,43] , where the components of 

solutions are likely to be either all zero or all nonzero in a group. By employing the grouping prior, ones aim to decrease 

the dispersion to facilitate recovering a much better solution. Here, we focus on joint sparsity, which is a special case of 

the group sparsity. Joint sparsity means that multiple unknown sparse vectors share a common unknown nonzero support 

set. Unlike the many group sparsity situations where the grouping information is unknown, the joint sparsity provides 

us the group information. In the following section, we will introduce the background of joint sparsity via two important 

applications, i.e., compressive sensing and multi-task feature learning. 
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In compressive sensing, joint sparsity aims to reconstruct unknown signals from m measurement vectors based on a 

common measurement matrix. This is also called the multiple measurement vectors (MMV) problem [7,9,36] . Given the 

observation vectors b j ∈ R 

m ( j = 1 , . . . , � ) and a measurement matrix A ∈ R 

m ×n , we want to recovery the signal x j ∈ R 

n from 

the noisy underdetermined systems b j = Ax j + e j , where e j ∈ R 

m is the noise. All the signal vectors x 1 , . . . , x � share the 

sparsity pattern M , which implies the nonzero entries of x 1 , . . . , x � almost appear on the same position. A common signal 

recovery model is 

min 

x j 
| M| s.t. b j = Ax j + e j , j = 1 , . . . , �, (1) 

where | M | is the cardinality of M [17] . In theory, we can recover the signals X = [ x 1 , . . . , x � ] with rank rank (X ) = K if and 

only if 

| M| < 

spark (A ) − 1 + K 

2 

, (2) 

where spark ( A ) is the smallest set of linearly dependent columns of A [33] . Since problem (1) is NP-hard, it is usually relaxed 

with a convex alternative which is computationally efficient at the cost of more required measurements. Like � 1 -norm being 

the convex relaxation of � 0 -norm [2] , the � 2,1 -norm is widely used as the convex replacement of | M | as below: 

min 

X 
|| X || 2 , 1 := 

n ∑ 

i =1 

|| x i || 2 (3) 

s.t. b j = Ax j + e j , j = 1 , . . . , �, 

where x i ∈ R 

� and x j ∈ R 

n denote the i -th row and the j th column of X , respectively. 

Several fast algorithms have been proposed to solve problem (3) [40] such as greedy pursuit methods, iterative shrink- 

age algorithm [1] and alternating direction method (ADM) [26] . The greedy pursuit methods such as matching pursuit and 

orthogonal matching pursuit (OMP) [36] tend to require fewer computations but at the expense of slightly more measure- 

ments. 

Multi-task learning has attracted much attention in machine learning [13,39] . It aims to learn the shared information 

among related tasks in order for the improved performance than considering each learning task individually. Recently, multi- 

task feature learning based on the � 2,1 -norm regularization has been studied. An underlying property of the � 2,1 -norm reg- 

ularization is that it urges multiple features from different tasks to share similar sparsity patterns [38] . Given � learning 

tasks associated with training data {( A 

1 , b 1 ), . . . , ( A 

� , b � )}, where A 

j ∈ R 

m j ×n is the data matrix of the j th task with each 

row as a sample and each column as a feature; b j ∈ R 

m j is the response of the j th task with biases e j ; n is the number 

of features; and m j is the number of samples for the j th task, we would like to learn a weight matrix (sparsity pattern) 

X = [ x 1 , . . . , x � ] ∈ R 

n ×� ( x j ∈ R 

n consists of the weight vectors for � linear predictive models b j = A 

j x j + e j ) by solving the 

following optimization problem: 

min 

X 
|| X || 2 , 1 := 

n ∑ 

i =1 

|| x i || 2 (4) 

s.t. b j = A 

j x j + e j , j = 1 , . . . , �, 

where x i ∈ R 

� and x j ∈ R 

n denote the i th row and the j th column of X , respectively. In this situation we assume that these 

different tasks share the same significant features, which leads to a joint sparsity problem. 

The unconstrained formula corresponding to problems (3) and (4) can be written as the following unified form 

min 

X 
L (X ) + ρ|| X || 2 , 1 , (5) 

where ρ > 0 is the regularization parameter, and L ( X ) is a smooth convex loss function such as the least square loss function 

or the logistic loss function. For example, L (X ) = 

∑ � 
j=1 ‖ A x j − b j ‖ 2 2 

for problem (3) , and L (X ) = 

∑ � 
j=1 

1 
�m j 

‖ A 

j x j − b j ‖ 2 2 
for 

problem (4) . 

While the convexity of � 2,1 -norm regularization provides computational efficiency, it also gives rise to the inherited bias 

issue. Similar with the � 1 -norm regularized model which only achieves suboptimal recovery performance compared with 

the original cardinality regularized model from the theoretical viewpoint [6] , � 2,1 -norm regularized model also only achieves 

suboptimal performance compared with the cardinality based model (1) . 

Recently, several computational advances have considered the non-convex sparse regularization since its performance 

is better than that of the convex sparse regularization [11,12] . For instance, for the single vector recovery, the non-convex 

� p -norm (0 < p < 1) based sparsity regularization usually obtains better performance than � 1 -norm based sparsity reg- 

ularization [5,18,21] . For the joint sparsity, the � q, p -norm is applied in a similar way, where 0 < p < 1 and q ≥ 1. The 

non-convex sparse regularization needs less strict recovery requirements and usually achieves a better performance than 

the convex alternatives. While there have existed many algorithms for solving the non-convex sparse regularized models, 

it is still a challenging problem to obtain the global optimal solution efficiently. The behavior of a local solution is hard to 

analyze and more seriously structural information of the solution is also hard to be incorporated into these algorithms. 
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