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a b s t r a c t 

We investigate the dynamics of the (47171) Lempo triple system, also known by 1999 TC 36 . We derive 

a full 3D N -body model that takes into account the orbital and spin evolution of all bodies, which are 

assumed triaxial ellipsoids. We show that, for reasonable values of the shapes and rotational periods, the 

present best fitted orbital solution for the Lempo system is chaotic and unstable in short time-scales. The 

formation mechanism of this system is unknown, but the orbits can be stabilised when tidal dissipation 

is taken into account. The dynamics of the Lempo system is very rich, but depends on many parameters 

that are presently unknown. A better understanding of this systems thus requires more observations, 

which also need to be fitted with a complete model like the one presented here. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

A non-negligible fraction of the small bodies in the solar sys- 

tem are in multiple systems, mostly composed by binaries (e.g. 

Noll et al., 2008 ). The shapes of these small objects are usually ir- 

regular ( Lacerda and Jewitt, 2007 ), resulting in important asymme- 

tries in the gravitational potential. The dynamics of these objects 

is thus very rich, as these asymmetries lead to strong spin-orbit 

coupling, where the rotation rate can be captured in a half-integer 

commensurability with the mean motion ( Colombo, 1965; Goldre- 

ich and Peale, 1966 ). For very eccentric orbits or large axial asym- 

metries, the rotational libration width of the individual resonances 

may overlap, and the dynamics becomes chaotic ( Wisdom et al., 

1984; Wisdom, 1987 ). When a third body is added to the prob- 

lem, the mutual gravitational perturbations also introduce addi- 

tional spin-orbit resonances at the perturbing frequency ( Goldreich 

and Peale, 1967; Correia et al., 2015; Delisle et al., 2017 ). 

The spin and orbital dynamics of small-body binaries has been 

object of many previous studies. However, due to the complexity 

of the spin-orbit interactions, in general these works either focus 

on the spin or in the orbital dynamics, i.e., they study the spin of 

a triaxial body around a distant companion (e.g. Batygin and Mor- 

bidelli, 2015; Naidu and Margot, 2015; Jafari Nadoushan and Assa- 

dian, 2016 ), or the motion of a test particle around a triaxial body 

(e.g. Mysen and Aksnes, 2007; Scheeres, 2012; Lages et al., 2017 ). 

Moreover, for simplicity, most studies consider that the spin axis 

is always normal to the orbital plane, and when a third body is 

considered, the orbits are also made coplanar. 
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(47171) Lempo (also known by 1999 TC 36 ) is a triple system. 

It is classified as a Plutino , since it is in a 3/2 mean-motion res- 

onance with Neptune, like Pluto. The primary was discovered in 

1999 at the Kitt Peak Observatory ( Rubenstein and Strolger, 1999 ). 

A similar size secondary was identified in 2001 from images ob- 

tained by the Hubble Space Telescope ( Trujillo and Brown, 2002 ). 

Subsequent observations lead to the determination of the orbit 

of the secondary with a period of about 50 days ( Margot et al., 

2005 ). A third component, also of similar size, was finally dis- 

covered in 2007 also using observations from the Hubble Space 

Telescope ( Jacobson and Margot, 2007 ). The third body is actually 

much closer to the primary than the secondary, with an orbital pe- 

riod of only 1.9 days ( Benecchi et al., 2010 ). The Lempo system can 

thus be characterised as an inner close binary with an outer cir- 

cumbinary companion, with all three components being of identi- 

cal sizes, which is unique. 

The name Lempo actually refers to the larger component of the 

inner binary, while the smaller component is named Hiisi , and the 

outer circumbinary component is named Paha . The best fitted or- 

bits for the Lempo system are eccentric ( ∼ 0.1 for the inner orbit 

and ∼ 0.3 for the outer one) and present a mutual inclination of 

about 10 degrees ( Benecchi et al., 2010 ). The three bodies have di- 

ameter sizes within 100 − 300 km ( Mommert et al., 2012 ), which 

is consistent with a large triaxiality. Therefore, since the two inner 

components are very close to each other, we expect to observe a 

strong spin-orbit coupling in this system. 

In this paper we derive a full 3D model (for the orbits and 

spins) that is suitable to describe the motion of a N−body system, 

where all bodies are assumed triaxial ellipsoids ( Section 2 ). This 

model is able to simultaneously handle spin and orbital dynam- 
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ics without any kind of restrictions. We then apply our model to 

the Lempo system in Section 3 , and show that the present best fit- 

ted solution corresponds to a chaotic system for reasonable values 

of the unknown triaxiality. In Section 4 we analyse the impact of 

tidal evolution on the final evolution of the system. Finally, in last 

section we discuss our results. 

2. Model 

In this section we derive a very general model that is suited to 

study a system of N -bodies with ellipsoidal shapes. Our model is 

valid in 3D for the orbits and individual spins. We make no partic- 

ular assumption on the spin axes. We use cartesian inertial coordi- 

nates, and quaternions to deal with the rotations. 

2.1. Potential of an ellipsoidal body 

We consider an ellipsoidal body of mass m , and chose as ref- 

erence the cartesian inertial frame ( i , j , k ). In this frame, the ro- 

tational angular velocity and angular momentum vectors of the 

body are given by ω = (ω i , ω j , ω k ) and L = (L i , L j , L k ) , respectively, 

which are related through the inertia tensor I as 

L = I · ω ⇔ ω = I −1 · L , (1) 

where 

I = 

[ 

I 11 I 12 I 13 

I 12 I 22 I 23 

I 13 I 23 I 33 

] 

. (2) 

The gravitational potential of the ellipsoidal body at a generic po- 

sition r from its center-of-mass is given by (e.g., Goldstein, 1950 ) 

V ( r ) = −Gm 

r 
+ 

3 G 

2 r 3 

[ 
ˆ r · I · ˆ r − 1 

3 

tr (I) 
] 

, (3) 

where G is the gravitational constant, ˆ r = r /r = ( ̂  x , ̂  y , ̂  z ) is the unit 

vector, and tr (I) = I 11 + I 22 + I 33 . We neglect terms in ( R / r ) 3 , where 

R is the mean radius of the body (quadrupolar approximation). 

Adopting the Lagrange polynomial P 2 (x ) = (3 x 2 − 1) / 2 , we can 

rewrite the previous potential as 

V ( r ) = −Gm 

r 
+ 

G 

r 3 

[ (
I 22 − I 11 

)
P 2 ( ̂  y ) + 

(
I 33 − I 11 

)
P 2 ( ̂ z ) 

+ 3 

(
I 12 ̂  x ̂  y + I 13 ̂  x ̂ z + I 23 ̂  y ̂ z 

)] 
. (4) 

2.2. Point-mass problem 

We now consider that the ellipsoidal body orbits a point-mass 

M located at r . The force between the two bodies is easily obtained 

from the potential energy of the system U( r ) = MV ( r ) ( Eq. (4) ) as 

F = −∇U( r ) = f (M, m, r ) + g (M, I, r ) + h (M, I, r ) , (5) 

with 

f (M, m, r ) = −GMm 

r 3 
r , (6) 

g (M, I, r ) = 

15 GM 

r 5 

[ 
I 22 − I 11 

2 

(
ˆ y 2 − 1 

5 

)
+ 

I 33 − I 11 

2 

(
ˆ z 2 − 1 

5 

)
+ I 12 ̂  x ̂  y + I 13 ̂  x ̂ z + I 23 ̂  y ̂ z 

] 
r , (7) 

h (M, I, r ) = −3 GM 

r 4 

[ (
I 22 − I 11 

)
ˆ y j + 

(
I 33 − I 11 

)
ˆ z k 

+ I 12 ( ̂  x j + 

ˆ y i ) + I 13 ( ̂  x k + ̂

 z i ) + I 23 ( ̂  y k + ̂

 z j ) 
] 
. (8) 

We thus obtain for the orbital evolution of the system 

r̈ = F /β , (9) 

where β = Mm/ (M + m ) is the reduced mass. The spin evolution of 

the ellipsoidal body can also be obtained from the force, by com- 

puting the gravitational torque. In the inertial frame we have: 

˙ L = T (M, I, r ) = −r × F = −r × h , (10) 

that is, 

T (M, I, r ) = 

3 GM 

r 3 
ˆ r ×

[ (
I 22 − I 11 

)
ˆ y j + 

(
I 33 − I 11 

)
ˆ z k 

+ I 12 ( ̂  x j + 

ˆ y i ) + I 13 ( ̂  x k + ̂

 z i ) + I 23 ( ̂  y k + ̂

 z j ) 
] 
, (11) 

or 

T = 

3 GM 

r 3 

⎡ 

⎣ 

(
I 33 − I 22 

)
ˆ y ̂ z − I 12 ̂  x ̂ z + I 13 ̂  x ̂  y + I 23 ( ̂  y 2 − ˆ z 2 ) (

I 11 − I 33 

)
ˆ x ̂ z + I 12 ̂  y ̂ z + I 13 ( ̂ z 2 − ˆ x 2 ) − I 23 ̂  x ̂  y (

I 22 − I 11 

)
ˆ x ̂  y + I 12 ( ̂  x 2 − ˆ y 2 ) − I 13 ̂  y ̂ z + I 23 ̂  x ̂ z 

⎤ 

⎦ . (12) 

Apart from a sphere, in the inertial frame ( i , j , k ) the inertia tensor 

(2) is not constant. We let S be the rotation matrix that allow us 

to convert any vector u B in a frame attached to the body into the 

cartesian inertial frame u I , such that u I = S u B . Thus, we have 

I = S I B S T , and I −1 = S I −1 
B S 

T , (13) 

where I B is the inertia tensor in the body frame. For principal axis 

of inertia I B = diag (A, B, C) and I −1 
B 

= diag (A 

−1 , B −1 , C −1 ) . The evo- 

lution of S over time is given by 

˙ S = ˜ ω S , and 

˙ S T = −S T ˜ ω , (14) 

with 

˜ ω = 

[ 

0 −ω k ω j 

ω k 0 −ω i 

−ω j ω i 0 

] 

. (15) 

In order to simplify the evolution of S, a set of generalized coor- 

dinates to specify the orientation of the two frames can be used. 

Euler angles are a common choice, but they introduce some sin- 

gularities. Therefore, here we use quaternions (eg. Kosenko, 1998 ). 

We denote q = (q 0 , q 1 , q 2 , q 3 ) the quaternion that represents the 

rotation from the body frame to the inertial frame. Then 

S = 

[ 

q 2 0 + q 2 1 − q 2 2 − q 2 3 2(q 1 q 2 − q 0 q 3 ) 2(q 1 q 3 + q 0 q 2 ) 
2(q 1 q 2 + q 0 q 3 ) q 2 0 − q 2 1 + q 2 2 − q 2 3 2(q 2 q 3 − q 0 q 1 ) 
2(q 1 q 3 − q 0 q 2 ) 2(q 2 q 3 + q 0 q 1 ) q 2 0 − q 2 1 − q 2 2 + q 2 3 

] 

, 

(16) 

and 

˙ q = 

1 

2 

(0 , ω ) · q = 

1 

2 

⎡ 

⎢ ⎣ 

−ω i q 1 − ω j q 2 − ω k q 3 
ω i q 0 + ω j q 3 − ω k q 2 

−ω i q 3 + ω j q 0 + ω k q 1 
ω i q 2 − ω j q 1 + ω k q 0 

⎤ 

⎥ ⎦ 

. (17) 

To solve the spin-orbit motion, we need to integrate equations (9), 

(10) and (17) , using the relations (1), (13) and (16) . 

2.3. Two-body problem 

Consider now that two ellipsoidal bodies with masses m 0 and 

m 1 , and inertia tensors I 0 and I 1 , respectively, orbit around each 

other at a distance r from their centers-of-mass. The total potential 

energy can be written from expression (3) as 

U = −Gm 0 m 1 

r 
+ 

3 G 

2 r 3 

[ 
ˆ r · J · ˆ r − 1 

3 

tr (J ) 
] 

, (18) 

with J = m 0 I 1 + m 1 I 0 . This potential is very similar to the previ- 

ous point-mass problem and the equations of motion are simply 

r̈ = F 01 ( r ) /β01 , (19) 
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