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H I G H L I G H T S

• Comprehensive mathematical derivation for the superposition of system states on different time grids.

• A novel approach linking the states between typical operating periods in energy system design models.

• Method validation with different energy system configurations for typical days aggregated with k-medoid clustering.

• Reduction of computational load by 90% for renewable-based energy system optimization, including seasonal storage.
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A B S T R A C T

The optimization-based design of renewable energy systems is a computationally demanding task because of the
high temporal fluctuation of supply and demand time series. In order to reduce these time series, the aggregation
of typical operation periods has become common. The problem with this method is that these aggregated typical
periods are modeled independently and cannot exchange energy. Therefore, seasonal storage cannot be ade-
quately taken into account, although this will be necessary for energy systems with a high share of renewable
generation.

To address this issue, this paper proposes a novel mathematical description for storage inventories based on
the superposition of inter-period and intra-period states. Inter-period states connect the typical periods and are
able to account their sequence. The approach has been adopted for different energy system configurations. The
results show that a significant reduction in the computational load can be achieved also for long term storage-
based energy system models in comparison to optimization models based on the full annual time series.

1. Introduction: time series aggregation for renewable energy
systems

Designing energy systems with minimal ecologic and economic
impact is a highly complex task: energy supply and demand must be
balanced in time, in space, and in energy form, and the increasing
number of generation, storage, and load management options leads to
extremely large solution spaces where identifying optimality in tech-
nology options, placement, sizing, and operation can be daunting.
Solving such problems analytically may not be feasible, instead re-
quiring the use of mathematical programs to identify the optimal so-
lution [1].

1.1. Motivation to aggregate time series

Although Moore’s Law held for the most of the last few decades [2],

the computational tractability of these mathematical programs remains
substantially limited [3]. The size of the input data directly influences
the size of the related optimization problem, and with it the require-
ment for processing resources. The integration of renewable energy
expands this challenge because the proper modelling of these technol-
ogies is only possible with increased resolution of the temporal fra-
mework [4–6].

Therefore, it has become necessary to systematically simplify the
design problem in advance. This can be done through the aggregation
of the input time series to typical operational periods. This is popular
because most of the considered time series have patterns to their
hourly, daily and seasonal variations. Therefore, it is reasonable to re-
duce redundant data until the minimal required representative data set
for the problem is reached. Lythcke-Jørgensen et al. [7] refer to these
typical periods as characteristic operation patterns.

Different methods for the aggregation of these patterns have been
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proposed: For example, creating typical days by averaging time series
over a day defined by month or weekday has been popular [8–11].
Nevertheless, this approach can lead to deviations in the results of the
related optimization problem due to smoothing effects in the shape of
the profiles [12–14]. Furthermore, individual optimization methods for
the aggregation of typical periods [15,16] or graphical methods ([17])
have also been introduced. In the recent literature, cluster methods
have attracted growing interest for their potential to reduce sets of time
series data to a few representative periods or time steps: The k-mean
clustering algorithm [18] is probably the most popular means of ag-
gregating the typical periods [13,19–24]. Alternatively, k-medoid clus-
tering is either used by stating a Mixed Integer Linear Problem (MILP),
which is deterministically solved to an exact solution [14,25], or by
applying greedy algorithms [26,27]. Another option is the hierarchical
clustering which can be used to determine groups of candidate periods
by some similarity criteria [28,29]. Nevertheless, in this case an addi-
tional method must be chosen afterwards so as to decide how the
cluster is represented, e.g. its medoid.

The aggregated typical periods are then integrated into the energy
system model as follows: Each period defines a closed operation time
frame. The economical or ecological impact of this period is represented
by magnifying by the number of times it appears in the original time
series. For clustering based time series aggregation it would be the
cardinal number of the cluster the period represents. The sequence of its
appearance in the original time series is then disregarded.

1.2. Typical periods and storage modeling

This approach is challenging because its suitability is highly specific
to the considered category of energy systems. For conventional system
design, it could be sufficient to reduce the dataset to a few independent
time slices [13,29], while for a storage-based system design, at least
typical days are required to incorporate intra-day storage [30] or ty-
pical weeks for inter-day storage [28,31]. The storage inventory is
thereby limited within each typical period by a so called cyclic condi-
tion [28,30–32]. This defines the storage inventory at the beginning of
the typical period to be equal to the storage inventory at the end of the
typical period.

Going one step further, 100% renewable energy system designs
based on fluctuating renewable energy resources, like wind and pho-
tovoltaics, require adequate seasonal storage solutions [33–37]. Al-
though, alternative approaches focus more on connecting regions in
order to balance weather fluctuations and try to minimize the re-
quirement for storage, storage should be still considered as a potential
solution and therefore included into energy system design models. For
the appropriate modeling and scaling of these seasonal storage, time
series are required that cover a whole year.

The representative periods described with this cyclic condition, on

the other hand, are only independent sections that cannot exchange
energy between them. We illustrate the drawback of this formulation
for storage-based energy systems by using typical weeks to design an
island system largely based on a renewable energy supply [12]. This
approach results in a significant deviation of the optimal scale of the
long term storage if it is compared to the optimal result based on the
full time series. As this problem would be expected [7,28], new
methods are required to solve the issue.

Rager and Maréchal [26] try to overcome this by grouping all the
days in a month and taking the medoid as a representative day for this
month. This enables the modeling of a consecutive order of these twelve
days, but it has the drawback that the diversity of days in a month are
not represented [28].

With respect to modeling annual storage operations, Samsatli et al.
[37] also aggregate typical days and put them in an order. The ag-
gregation is based on their appearance in the year as well; in their case
one typical day for each quarter of the year. This leads to an insufficient
representation of variability within a quarter. Nevertheless, the choice
of the representative period is interesting: While the demand profiles
are averaged, the typical wind profiles are chosen according to their
highest intra-day variability in order to aim for a robust system design.

Renaldi and Friedrich [32] introduce multiple time grids for the
operational optimization of an energy system which also relies on
seasonal storage. This approach is popular for controlling process plants
or electrical grids and makes use of the different time constants of
different elements of the system considered. Elements with fast re-
sponse times are modeled on a time grid with a high resolution in
parallel to elements with higher inertia which are considered on a time
grid with low resolution. This enables a reduction in the related opti-
mization problem in comparison to considering all elements on the
same time grid. Nevertheless, the majority of energy system technolo-
gies have a varying operation inside a day. A second time grid would
only reduce the variables introduced due to the seasonal storages, but
the majority of the technologies still must be modeled with the full time
series. Therefore, the possibility to reduce the optimization problem is
limited.

Gabrielli et al. [24] propose two new comprehensible methods (M1
and M2) for modeling seasonal storage together with time series ag-
gregation. The majority of the system equations are also modeled with
typical days while the storage equations hold for the whole original
time grid (M1), which is described by a sequence of typical days. In the
second method (M2), additional all equations sets that are not directly
related to binary or integer decision variables are considered on the full
time grid. A system operation results where the storage states of two
days of the year described by the same typical day are characterized by
a similar variation of stored energy but a different value of stored en-
ergy at the beginning of each day.

Nomenclature

State space

A system matrix
B input matrix
x system states
u input vector

Subscripts

t general time index
g step index inside a period
i candidate period index
k typical period index

intra value inside a period
inter value between two periods

Energy storage

Ds scaling of a storage [kW h]
Eṡ

char charge flow [kW]
Eṡ

dis discharge flow [kW]
SOCs state of charge [kW h]
ηs

char charge efficiency [–]
ηs

dis discharge efficiency [–]
ηs

self self discharge rate [1/s]
tΔ time step length [s]

L. Kotzur et al. Applied Energy 213 (2018) 123–135

124



https://isiarticles.com/article/105992

