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a b s t r a c t

This paper presents theoretical results on the properties of forecasts obtained by using
singular spectrum analysis to forecast time series that are realizations of stochastic
processes. Themean squared forecast errors are derived under broad regularity conditions,
and it is shown that, in practice, the forecasts obtained will converge to their
population ensemble counterparts. The theoretical results are illustrated by examining
the performances of singular spectrum analysis forecasts when applied to autoregressive
processes and a randomwalk process. Simulation experiments suggest that the asymptotic
properties developed are reflected in the behaviour of observed finite samples. Empirical
applications using real world data sets indicate that forecasts based on singular spectrum
analysis are competitive with other methods currently in vogue.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Singular spectrum analysis (SSA) is a nonparametric
technique that is designed for use in signal extraction and
the prediction of irregular time series that may exhibit
non-stationary and nonlinear properties, as well as inter-
mittent or transient behaviour. The development of SSA
is often attributed to researchers working in the physi-
cal sciences, namely Broomhead and King (1986), Vautard
and Ghil (1989) and Vautard, Yiou, and Ghil (1992), al-
though many of the basic building blocks were outlined
by Basilevsky and Hum (1979) in a socioeconomic setting,
and an early formulation of some of the key ideas can be
found in the work of Prony (1795). An introduction to SSA
is presented by Elsner and Tsonis (1996), and a more de-
tailed examination of the methodology, with an emphasis
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on the algebraic structure and algorithms, is provided by
Golyandina, Nekrutkin, and Zhigljavski (2001).

The application of SSA to forecasting has gained
popularity over recent years (see for example Hassani,
Heravi, & Zhigljavsky, 2009, Hassani, Soofi, & Zhigljavsky,
2010, Hassani & Zhigljavsky, 2009 and Thomakos, Wang,
&Wille, 2002, for applications in business and economics),
and the general finding appears to be that SSA performs
well. These studies have examined SSA forecasts by
investigating real world applications and comparing the
performance of SSA to those of other benchmarks like
ARIMA models and Holt–Winters procedures. However,
with real world data the true data generating mechanism
is not known, and making a comparison with such
benchmarks does not convey the full picture: knowing that
SSA outperforms a benchmark serves only to show that the
benchmark is suboptimal, and therefore does not provide
an appropriate baseline.

In this paper, our purpose is to provide what we believe
to be the first theoretical analysis of the forecasting per-
formance of SSA under appropriate regularity conditions
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concerning the true data generating mechanism. We
present a formulation of the SSAmean squared forecast er-
ror (MSFE) for a general class of processes. The usefulness
of such formulae lies not only in the fact that they provide
a neat mathematical characterization of the SSA forecast
error, but also in the fact that they allow a comparison to
be made between SSA and the optimal mean squared er-
ror solution for a known random processes. The minimal
mean squared error (MMSE) predictor obviously provides
a (gold) standard against which all other procedures can be
measured.

Irrespective of the actual structure of the observed
process, SSA forecasts are obtained by calculating a linear
recurrence formula (LRF) that is used to construct a
prediction of the future value(s) of the realized time
series. Given a univariate time series of length N , the
coefficients of the LRF are computed from a spectral
decomposition of an m × n dimensional Hankel matrix
known as the trajectory matrix. The dimension m is called
the window length, and n = N − m + 1 is referred
to as the window width. The Gramian of the trajectory
matrix is constructed for a known window length, and
the eigenvalue decomposition of the Gramian evaluated.
This is then used to decompose the observed series into a
signal component, constructed from k eigentriples of the
Hankel matrix (the first k left and right hand eigenvalues
and their associated singular values), and a residual. The
resulting signal plus noise decomposition is then employed
to produce a forecast via the LRF coefficients. Details
are presented in the following section, where we outline
the basic structure of the calculations underlying the
construction of a SSA(m, k) model and the associated
forecasts.

Section 3 presents the theoretical MSFE of a SSA(m, k)
model under very broad assumptions. The formulae that
we derive indicate how the use of different values of m, a
tuning parameter, and k, a modeling parameter, will inter-
act to influence the MSFE obtained from a given SSA(m, k)
model. In Section 4, it is shown that, when appropriate
regularity conditions are satisfied, the SSA forecasts con-
structed in practice, and their associated MSFE estimates,
will converge to their theoretical population ensemble
counterparts.

Section 5 illustrates the theoretical results obtained in
Sections 3 and 4. In forecasting applications, it is common
practice to assume implicitly that the fitted model is
correct, and therefore that the forecasting formulae
derived from the model are appropriate; however, such
an assumption rarely holds true. In general, the true data
generating process (DGP) is unknown, and the fittedmodel
will only provide, at best, a close approximation to the
true DGP. Hence, the expectation is that the forecasting
performance of a fitted model will be sub-optimal, and
therefore it is natural to ask in what ways and to what
extent the forecasting performance of the fittedmodel will
fall short. In an attempt to address this question, Section 5
examines the MSFE performances of different SSA(m, k)
models and compares themwith those of the optimal MSE
predictors for known DGPs.

Section 6 demonstrates the application of SSA fore-
casting to different real world time series. It shows that

SSA forecasts can provide considerable improvements in
empirical MSFE performances over the conventional
benchmarkmodels that have been used previously to char-
acterize these series. Section 7 presents a brief conclusion.

2. The mechanics of SSA forecasting

Singular spectrum analysis (SSA) is based on the basic
idea that there is an isomorphism between an observed
time series {x(t) : t = 1, . . . ,N} and the vector space of
m × n Hankel matrices, defined by the mapping

{x(t) : t = 1, . . . ,N} → X

=


x(1) x(2) · · · x(n)
x(2) x(3) · · · x(n + 1)

...
...

...
x(m) x(m + 1) · · · x(N)


= [x1 : . . . : xn], (1)

wherem is a preassigned window length, n = N − m + 1,
xt = (x(t), x(t + 1), . . . , x(t + m − 1))′, and the so called
trajectory matrix X = [x(i + t − 1)] for i = 1, . . . ,m
and t = 1, . . . , n. Let ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓm >

0 denote the eigenvalues of XX ′ arranged in descending
order of magnitude, and u1, u2, . . . , um the corresponding
orthonormal system of eigenvectors. The trajectory matrix
can be expressed as X =

m
i=1 Xi, the sum of m rank

one projections Xi =
√

ℓiuiv ′

i = uiu′

iX , where ui and
vi = X ′ui/

√
ℓi, i = 1, . . . ,m, are the left and right

eigenvectors of X . Now suppose that a large proportion of
the total variation in XX ′ can be associated with a subset
of dominant eigentriples {ℓi, ui, vi}, i = 1, . . . , k. The
projection of X onto the space spanned by ui, i = 1, . . . , k,
Sk =

k
i=1 Xi, can then be viewed as the component of

X that is due to the presence of a signal in the original
series, where k is the designated dimension of the signal,
and the remainder Ek =

m
i=k+1 Xi can be taken as the

component due to noise. Thiswill be referred to henceforth
as an SSA(m, k) model.

Suppose that a SSA(m, k) model has been fitted to time
series data x(1), x(2), . . . , x(N). Since Sk has rank k < m,
there exists anm×(m−k)matrixP with columns that span
the null space of Sk, implying that P ′Sk = 0, and hence, that
the last row of Sk can be expressed as a linear combination
of the first m − 1 rows. This in turn implies that, in the
terminology of SSA, the signal satisfies a linear recurrent
formula (LRF), namely s(t) =

m−1
j=1 ajs(t − m + j), where

the coefficients a1, . . . , am−1 in the LRF are calculated by
forming the projection of S l

k, the last row of the signal
component Sk, onto Su

k , its firstm − 1 rows.

Lemma 1. Let Uk = [u1, . . . , uk] denote the matrix con-
taining the first k eigenvectors of XX ′, and let a1, . . . , am−1
denote the coefficients formed by projecting S l

k, the last row
of Sk = UkU ′

kX , onto Su
k , its first m − 1 rows. Then,

(a1, . . . , am−1) = (1 − U l
kU

l′
k )−1U l

kU
u′

k , where U l
k is the last

row of Uk and Uu
k is the matrix containing the first m − 1
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