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a b s t r a c t 

A generalised advection equation with a time fractional derivative is derived from a continuous time 

random walk on a one-dimensional lattice, with power law distributed waiting times. We consider walks 

governed by a two-sided jump density and walks governed by a one-sided jump density. With the two- 

sided density, the particle can jump in both directions on the lattice, whereas with the one-sided density 

the particle cannot jump in one of these directions. The master equations describing the evolution of the 

probability density for the position of the particle are different for each of the jump densities. However 

in an advective limit both master equations limit to a common generalized advection equation with time 

fractional derivatives. 

We have also considered the stochastic processes in a discrete time setting, again arriving at different 

discrete time master equations for each of the jump densities. The discrete time master equations can 

be used to provide different numerical approximations to the solutions of the fractional generalized ad- 

vection equation. The approximations allow us to compare the efficacy of the one-sided and two-sided 

densities. 

Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Continuous time random walks (CTRWs) [1,2] , and more re- 

cently discrete time random walks (DTRWs) [3–5] , have been 

widely employed as physically consistent stochastic processes 

whose master equations limit to fractional order partial differential 

equations (fPDEs). Examples include time fractional Fokker–Planck 

equations [6–10] , fractional reaction diffusion equations [11–14] , 

fractional cable equations [15–17] and fractional advection disper- 

sion relations [7,18] . Fractional order ordinary differential equa- 

tions have also been derived by considering CTRWs through com- 

partments [19–21] . The temporal fractional order derivatives that 

arise in CTRW formulations arise from power law distributed wait- 

ing times between jumps. Spatial fractional order derivatives have 

also been motivated in CTRW formulations by considering power 

law distributed jumps lengths [7,22–27] . Space, and time, fractional 

derivatives for transport on networks, including finite and infinite 

lattices, have also been considered [28–32] . 
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The solutions of time fractional differential equations that can 

be derived from CTRWs or DTRWs share important physical prop- 

erties of the probability density governing the random walks, such 

as positivity and boundedness [4,11] . Furthermore, in contrast to 

fractional order models where fractional derivatives have been in- 

troduced in an ad hoc way to replace integer order derivatives, 

there is no ambiguity about the units of the constants that arise 

in the derivations from an underlying stochastic process [20] . The 

generalized master equations for the DTRW formulations can also 

be employed to provide numerical solutions that approximate the 

solutions of the corresponding limiting partial differential equa- 

tions or ordinary differential equations [3,4,19] . 

In this work we have derived a time fractional partial differ- 

ential advection equation by considering an advective limit in the 

generalized master equations for CTRWs on a one dimensional lat- 

tice with power law distributed waiting times. We have also de- 

rived the generalized master equations for corresponding DTRWs 

which limit to the same fractional advection equation and we use 

these master equations as a basis for obtaining numerical approxi- 

mations to the solutions of the fractional advection equation. 

The remainder of this paper is as follows: In Section 2 we 

derive the generalized master equations for CTRWs on a one- 

dimensional lattice, with a power law waiting time density and 
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with two different jum p length densities - a two-sided density, and 

a one-sided density. We derive a fractional Fokker–Planck equa- 

tion from the diffusive limit of the master equation, and a frac- 

tional generalized advection equation from an advective limit of 

the master equation. In Section 3 we derive the generalized master 

equations for DTRWs on a one-dimensional lattice with a power 

law waiting time probability mass function and with two different 

jump length densities. We show that the fractional generalized ad- 

vection equation is recovered in an advective limit. In Section 4 we 

consider two different numerical approximations for the solution 

of the fractional advection equation, one based on the DTRW mas- 

ter equation with a two-sided jump length density and the other 

based on the DTRW master equation with a one-sided jump length 

density. This is illustrated with an example. We conclude with a 

short discussion in Section 5 . 

2. The master equation of a CTRW 

The CTRW on a one-dimensional lattice is a stochastic pro- 

cess in which a particle resides on a lattice site for some ran- 

dom amount of time, drawn from a waiting time probability den- 

sity function, before jumping to a site on the lattice governed 

by a jump length probability density. The stochastic CTRW pro- 

cess has been widely employed in derivations of fractional Fokker–

Planck type equations [6,8–10,14] . There are two fundamental steps 

in these derivations. The first is the derivation of the generalized 

master equation that governs the time evolution of the probability 

density for the location of the particle. The second is taking the 

diffusive limit of the generalized master equation to obtain a par- 

tial differential equation. 

For completeness, we revisit the derivation of the generalized 

master equation. We also include the consideration of two differ- 

ent jump length densities; a two-sided density, and a one-sided 

density. We then consider different limits to fractional partial dif- 

ferential equations; a diffusive limit and an advective limit. 

To begin, we consider a one-dimensional lattice with sites de- 

noted by x i where i ∈ N . The flux of probability of the particle en- 

tering the lattice site x i at time t , after having taken n jumps can 

be defined recursively by, 

q n +1 (x i , t) = 

∑ 

j 

∫ t 

0 

�(x i , t| x j , t ′ ) q n (x j , t 
′ ) dt ′ , (1) 

where �( x i , t | x j , t ′ ) is the transition probability density for a par- 

ticle that arrived at lattice site x j at time t ′ to jump to lattice site 

x i at time t . As � is independent of n , the number of jumps taken, 

we may write the flux entering lattice site x i , unconditional on n , 

as, 

q (x i , t) = 

∞ ∑ 

n =0 

q n (x i , t) . (2) 

The flux entering the lattice site x i after any number of steps can 

then by written recursively as, 

q (x i , t) = q 0 (x i , t) + 

∑ 

j 

∫ t 

0 

�(x i , t| x j , t ′ ) q (x j , t 
′ ) dt ′ . (3) 

In the following we suppose that � is separable such that, 

�(x i , t| x j , t ′ ) = λ(x i , t| x j ) ψ(t − t ′ ) . (4) 

Here ψ is a waiting time density that governs how long the par- 

ticle will stay at the site, and λ a jump length density that gov- 

erns the length of the jump. The jump length density is normalised 

such that, ∑ 

i 

λ(x i , t| x j ) = 1 , (5) 

and the waiting time density is normalised as, ∫ ∞ 

0 

ψ(t) dt = 1 . (6) 

In the case where the particle begins at a lattice site, x 0 , at time 

t = 0 , the initial flux condition will be a product of a Kronecker 

and a Dirac delta functions, i.e. q 0 (x i , t) = δx i ,x 0 δ(t) . Other initial 

conditions have been considered recently in [33] . For the subse- 

quent derivation, we split the flux into the discontinuous and dif- 

ferentiable components, i.e., 

q (x i , t) = δx i ,x 0 δ(t) + q + (x i , t) , (7) 

where the differentiable component is given by, 

q + (x i , t) = 

∑ 

j 

∫ t 

0 

λ(x i , t | x j ) ψ(t − t ′ ) q (x j , t 
′ ) dt ′ . (8) 

The master equation governs the evolution of the probability 

density, ρ( x i , t ), for the position of the particle. This probability 

density is related to the flux, via 

ρ(x i , t) = 

∫ t 

0 

�(t − t ′ ) q (x i , t 
′ ) dt ′ , (9) 

where � is the survival function associated with the waiting time 

density. The survival function can be computed from the waiting 

time density, 

�(t) = 1 −
∫ t 

0 

ψ(t ′ ) dt ′ . (10) 

To obtain the master equation we first differentiate Eq. (9) to 

give, 

∂ρ(x i , t) 

∂t 
= q + (x i , t) −

∫ t 

0 

ψ(t − t ′ ) q (x i , t 
′ ) dt ′ , 

= 

∑ 

j 

∫ t 

0 

λ(x i , t| x j ) ψ(t − t ′ ) q (x j , t 
′ ) dt ′ 

−
∫ t 

0 

ψ(t − t ′ ) q (x i , t 
′ ) dt ′ . (11) 

It remains to express the right hand side of this equation in terms 

of ρ . This can be achieved by introducing a memory kernel K ( t ) 

with the property that ∫ t 

0 

ψ(t − t ′ ) q (x i , t 
′ ) dt ′ = 

∫ t 

0 

K(t − t ′ ) ρ(x, t ′ ) dt ′ . (12) 

An explicit representation of the memory kernel can be obtained 

using Laplace transform methods. We use the notation 

L t { g(x, t) } = 

∫ ∞ 

0 

e −st g(x, t ) dt . (13) 

for the Laplace transform from t to s and L 

−1 
s as the inverse 

Laplace transform from s to t . We now take the Laplace transforms 

of Eq. (9) and of Eq. (12) using the convolution theorem, and we 

combine the results to obtain the Laplace transform of the memory 

kernel, 

L t { K(t) } = 

L t { ψ(t) } 
L t { �(t) } (14) 

and then the memory kernel is given by, 

K(t) = L 

−1 
s 

{
L t { ψ(t) } 
L t { �(t) } 

}
, (15) 

The master equation for the CTRW is now simply found by sub- 

stituting Eq. (12) into Eq. (11) . This yields 
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