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a b s t r a c t

In this paper, we study the dynamics of contagious spreading processes taking place in complex contact
networks. We specifically present a lower-bound on the decay rate of the number of nodes infected by a
susceptible–infected–susceptible (SIS) stochastic spreading process. A precise quantification of this decay
rate is crucial for designing efficient strategies to contain epidemic outbreaks. However, existing lower-
bounds on the decay rate based on first-order mean-field approximations are often accompanied by a
large error resulting in inefficient containment strategies. To overcome this deficiency, we derive a lower-
bound based on a second-order moment-closure of the stochastic SIS processes. The proposed second-
order bound is theoretically guaranteed to be tighter than existing first-order bounds. We also present
various numerical simulations to illustrate how our lower-bound drastically improves the performance of
existing first-order lower-bounds in practical scenarios, resulting inmore efficient strategies for epidemic
containment.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the dynamics of spreading processes taking
place in complex networks is one of the central questions
in the field of network science, with applications in informa-
tion propagation in social networks [1], epidemiology [2], and
cyber-security [3]. Among various quantities characterizing the
asymptotic behaviors of spreading processes, the decay rate (see,
e.g., [4,5]) of the spreading size (i.e., the number of nodes affected
by the spread) is of fundamental importance. Besides quantifying
the impact of contagious spreading processes over networks [6,7],
the decay rate has been used to measure the performance of con-
tainment strategies to control epidemic outbreaks [8]. In this direc-
tion, the authors in [9] presented an optimization-based approach
for distributing a limited amount of resources to efficiently contain
spreading processes by maximizing their decay rate towards the
disease-free equilibrium. This framework was later extended to
the cases where the underlying network in which the spreading
process is taking place is uncertain [10], temporal [11,12], and
adaptively changing [13,14]. Recently, the authors in [15] pre-
sented an approach for achieving an optimal resource allocation
in order to maximize the decay rate under sparsity constraints.

However, finding the decay rate of a spreading process is, in
general, a computationally hard problem. Even for the case of the
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susceptible–infected–susceptible (SIS) model [2], which is one of
the simplest models of spread, the exact decay rate is given in
terms of the eigenvalues of amatrixwhose size grows exponentially
fast with respect to the number of nodes in the networks [4].
In order to avoid this computational difficulty, it is common in
the literature [9,10,15] to use a lower-bound on the decay rate
based on first-order mean-field approximations of the spreading
processes. However, this first-order approximation is not neces-
sarily accurate; in other words, its approximation error can be
significantly large for several important social and biological net-
works, as we will demonstrate later in this paper. Therefore, the
design of strategies for epidemic containment based onmean-field
approximations can result in inefficient control policies.

The aim of this paper is to present a tighter lower-bound on
the decay rate of the stochastic SIS process based on a second-
order moment closure. Specifically, we show that the decay rate is
bounded from below by themaximum real eigenvalue of aMetzler
matrix whose size grows quadratically with respect to the number
of nodes in the network. In order to derive our lower-bound, we
describe the stochastic dynamics of the SIS process using a sys-
tem of stochastic differential equations with Poisson jumps. This
approach allows us to conveniently evaluate the dynamics of the
first and the second-order moments of random variables relevant
for the spreading processes. Furthermore, we prove theoretically
and illustrate numerically that our lower-bound strictly improves
the one based on first-order approximations.

We remark that, although improved decay rates for the
discrete-time SIS model were presented using second-order anal-
ysis in [16], their bounds are applicable only to the special case
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where the transmission and recovery rates of nodes are homo-
geneous and, furthermore, satisfy restrictive algebraic conditions
in terms of nonnegativity of infinitely many matrices. Likewise,
the second-order analysis of the continuous-time SIS model by the
authors in [17] uses mean-field approximations and, hence, it is
not clear how the analysis relates to the dynamics of the original
stochastic SIS process.Moreover, their analysis is valid onlywhen a
dominant eigenvalue of a certain matrix (i.e., an eigenvalue having
the maximum real part) is real. In contrast with these limitations
of the results in the literature, our framework applies to the het-
erogeneous SIS model without any restrictions, and is supported
by rigorous proofs instead of approximations.

This paper is organized as follows. In Section 2, we state
the problem studied in this paper. In Section 3, we present our
lower-bound on the decay rate, and show that this bound strictly
improves the one based on first-order approximations. The effec-
tiveness of our lower-bound is numerically illustrated in Section 4.

1.1. Mathematical preliminaries

We denote the identity and the zero matrices by I and O,
respectively. For a vector u, we denote by u\{i} the vector that is
obtained after removing the ith element from u. Likewise, for a
matrix A, we let Ai,\{j} denote the row vector that is obtained after
removing the jth element from the ith row of A. We say that a
square matrix A is irreducible if no similarity transformation by
a permutation matrix transforms A into a block upper-triangular
matrix. The block-diagonal matrix containing matrices A1, . . ., An
as its diagonal blocks is denoted by

⨁n
i=1Ai. If the matrices A1, . . .,

An have the same number of columns, then the matrix obtained by
stacking A1, . . ., An in vertical is denoted by col1≤i≤nAi.

A directed graph is defined as the pair G = (V, E), where V is
a finite ordered set of nodes and E ⊂ V × V is a set of directed
edges. By convention, if (v, v′) ∈ E , we understand that there is an
edge from v pointing towards v′, in which case v is said to be an in-
neighbor of v′. A directed path from v to v′ in G is an ordered set of
nodes (v0, . . . , vℓ) such that v0 = v, vℓ = v′, and (vk, vk+1) ∈ E for
k = 0, . . . , ℓ−1.We say that G is strongly connected if there exists
a directed path from v to v′ for all v, v′

∈ V . The adjacency matrix
of G is defined as the square matrix, having the same dimension as
the number of the nodes, such that its (i, j)th entry equals 1 if the
jth node is an in-neighbor of the ith node, and equals 0 otherwise.
It is well known that a directed graph is strongly connected if and
only if its adjacency matrix is irreducible.

A real matrix A (or a vector as its special case) is said to be non-
negative, denoted by A ≥ 0, if all the entries of A are nonnegative.
Likewise, if all the entries of A are positive, then A is said to be
positive. For another matrix B having the same dimensions as A,
the notation A ≤ B implies B − A ≥ 0. If A ≤ B and A ̸= B, we
write A ⪇ B. For a square matrix A, we say that A is Metzler [18] if
the off-diagonal entries of A are nonnegative. It is easy to see that
eAt ≥ 0 if A is Metzler and t ≥ 0 (see, e.g., [18]). For a Metzler
matrix A, the maximum real part of the eigenvalues of A is denoted
by λmax(A). In this paper, we use the following basic properties of
Metzler matrices:

Lemma 1. The following statements hold for a Metzler matrix A:

1. λmax(A) is an eigenvalue of A. Moreover, if A is irreducible,
then there exists a positive eigenvector corresponding to the
eigenvalue λmax(A).

2. If A ≤ B, then λmax(A) ≤ λmax(B). Furthermore, if A is
irreducible and A ̸= B, then λmax(A) < λmax(B).

3. Assume that A is irreducible. If there exist a positive vector u and
a positive constant ρ such that Au ⪇ ρu, then λmax(A) < ρ.

Proof. The first claim is part of the Perron–Frobenius theorem
for Metzler matrices (see, e.g., [18, Theorems 11 and 17]). The
second claim follows from the Perron–Frobenius theory and the
monotonicity of themaximum real eigenvalue of nonnegative ma-
trices [19, Section 8.4]. To prove the last statement, let ϵ = ρu−Au
and define A′

= A+
⨁

(ϵ1/u1, . . . , ϵn/un), where n is the length of
the vector u. Since A′u = Au + ϵ = ρu, A′ is irreducible, and v is
positive, it follows that λmax(A′) = ρ from the Perron–Frobenius
theorem for irreducible Metzler matrices [18, Theorem 17]. Since
A is irreducible and A ⪇ A′, the second statement of the lemma
shows that λmax(A) < λmax(A′) = ρ. □

2. Problem statement

We start by giving a brief overview of the SIS model [2]. Let G =

(V, E) be a strongly connected directed graph with nodes v1, . . .,
vn. In the SIS model, at a given (continuous) time t ≥ 0, each node
can be in one of two possible states: susceptible or infected. When
a node vi is infected, it can randomly transition to the susceptible
state with an instantaneous rate δi > 0, called the recovery rate
of node vi. On the other hand, if an in-neighbor of node vi is in
the infected state, then the in-neighbor can infect node vi with an
instantaneous rate βi, where βi > 0 is called the infection rate of
node vi. It is easy to see that the SIS model is a continuous-time
Markov process and has a unique absorbing state at which all the
nodes are susceptible. Since this absorbing state is reachable from
any other state, the SISmodel reaches this infection-free absorbing
state in a finite time with probability one. The aim of this paper is
to study the stability of this infection-free absorbing state, defined
as follows:

Definition 2. Let ϵ > 0 and define the probability

pi(t) = Pr(vi is infected at time t).

We say that the SIS model is ϵ-exponentially mean stable if there
exists a constant C > 0 such that, for all nodes vi and t ≥ 0, we
have pi(t) ≤ Ce−ϵt for any set of initially infected nodes at time
t = 0. Then, we define the decay rate of the SIS model as

ρ = sup{ϵ : SIS model is ϵ-exponentially stable}.

The notion of the decay rate was studied in, e.g., [4] and [5]
for the cases of continuous- and discrete-time problem settings,
respectively, and is closely related to other important quanti-
ties on spreading processes such as epidemic thresholds [4] and
mean-time-to-absorption [7]. Specifically, a basic argument from
the theory of Markov processes shows that the SIS model is
ϵ-exponentially mean stable for a sufficiently small ϵ > 0 (with
a possibly large C) and, therefore, it always has a positive decay
rate. However, exact computation of the decay rate is hard in
practice. Even in the homogeneous case, where all nodes share
the same infection and recovery rates, the decay rate equals the
modulus of the largest real-part of the non-zero eigenvalues of a
2n

× 2n matrix representing the infinitesimal generator of the SIS
model [4]. An alternative approach for analyzing the decay rate
is via upper bounds on the dynamics of the SIS model based on
first-order mean-field approximations. An example of such a first-
order upper bound is described below. Let us define the vector
p(t) = col1≤i≤npi(t) containing the infection probabilities of the
nodes. Also, let A be the adjacency matrix of G and define the
diagonal matrices B =

⨁
(β1, . . . , βn) and D =

⨁
(δ1, . . . , δn).

Then, we can show [9] the inequality p(t) ≤ e(BA−D)tp(0), which
gives the following lower-bound on the decay rate:

ρ ≥ ρ1 = −λmax(BA − D). (1)
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