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Abstract:

Introduction of the stochastic noise in the modelling of blood-glucose dynamics becoming
more and more acceptable because of the high complexity of the physiological processes. The
representation of the stochastic noise term in the phenomenological as well as in data-driven
models until now limited to stationary Gaussian process. In this paper the statistical nature of
the stochastic blood-glucose system model noise is investigated to prove or disprove this general
assumption. To ensure the generalization of the noise term a Wiener process (W (t)) with time
depending diffusion coefficient (o(t)W (t)) was considered. This stochastic term was embedded
into the phenomenological ICING (Intensive Control Insulin-Nutrition-Glucose) model and
then o(t) was identified by using clinical measurements from nine patients. The mean value,
the standard deviation, as well as the covariance of the slide distributions of the stochastic
glucose trajectories generated by the Ito type process were investigated. We have found that
this stochastic term is Gaussian process but not stationary. Our final goal is to find general
representation of the stochastic noise term by a parametric time series processes.
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1. INTRODUCTION

Development of an accurate model of human blood glucose
regulatory system that captures the relationship between
blood glucose changes, nutrition intake and insulin deliv-
ery represent major challenge. Modelling approaches may
be categorized as i) phenomenological models and ii) data-
driven models (Zhang et al. (2014)). The phenomeno-
logical models use a priori knowledge of the physiology
to describe the underlying processes (e.g. internal insulin
secretion, glucose uptake by different organs, etc.) by
compartments (Bergman (1989); Palumbo et al. (2013);
De Gaetano and Arino (2000); Dalla Man et al. (2006)).
These models generally contain relatively high number of
differential equations and system parameters that makes
hard to map these models to measurement data with low-
dimension and thus validate them.

Data-driven models are created by exploiting the infor-
mation hidden in the data. These models are constructed
without close relationship between the model elements
- i.e. differential equations and their parameters - and
physiological processes (Zhang et al. (2014); Florian and
Parker (2005); De Gaetano and Arino (2000)). Thus the
interpretation of these models are rather challenging.

Most of the published models in both of these categories
are deterministic models, i.e. ordinary differential equa-

tions (ODE) are used for the description of the models
(Bergman (1989); Palumbo et al. (2013)). However, it is
known that these models are imperfect in the sense that
modelling uncertainties, frequently stochastic nature of
the physiological system, and measurement noise cannot
be taken consideration (Georga et al. (2011)). Stochastic
modelling, i.e. description of the system by stochastic
differential equations can overcome on these shortcomings
as it has been successfully applied in several pharmacoki-
netic / pharmacodynamic systems (Donnet and Samson
(2013)).

Tornge et al. (Tornge et al. (2004)) revealed that stochastic
terms could take into consideration unknown or incorrectly
modelled dynamics of the system. After describing the
methodology of the stochastic modelling and parameter
estimation, they employed a simplified form of Bergman’s
minimal model Bergman (1989) to compare stochastic
and deterministic modelling and found that the system
noise parameter in the glucose equation is significant.
However, this model, now well-known does not capture
system dynamics well and may have mis-estimated the
stochastic features of the system.

Duun-Henriksen et al. (Duun-Henriksen et al. (2013)) sys-
tematically analysed a grey-box variant of an extended
minimal model and found two diffusion-terms are enough
to compensate error in the model equations. Although it
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may not be physically realistic since two diffusion terms
versus one implies a non-existent compartment. They
could demonstrate significant improvement in reducing
model error via stochastic modelling. To carry out compu-
tations they used a statistical software CTSMR package
(Continuous Time Stochastic Modelling in R).

Vilhjalmsdéttir (Vilhjalmsdottir (2013)) employed deter-
ministic as well as stochastic minimal model to investi-
gate insulin sensitivity. She added diffusion terms only
to the insulin and glucose equations and used the re-
sults of the deterministic model as initial guess for the
parameter estimation of the stochastic model. She found
that stochastic approach could give better estimate of
the insulin sensitivity than the deterministic one. Finally,
Kristensen et al. also described the methodology of the
parameter estimation of stochastic differential equations
and illustrated software tools CTSMR as well as MoCaVa
which runs under MATLAB (Kristensen et al. (2004)).

The stochastic model allows not only the reduction of
the model error but also enables characterizing the noise
integrated into the stochastic term. The representation of
the stochastic term in the phenomenological as well as in
data-driven models for blood glucose dynamics until now
limited to a stationary Gaussian process. In this paper the
statistical nature of the noise is investigated to prove or
disprove this general assumption. For this study our pre-
viously published stochastic differential equation (SDE)
based blood glucose system model is used ( Paldncz et al.
(2016Db)). Ensuring the generalization of the noise term a
Wiener process with time depending diffusion coefficient
(o(t)W(t)) was considered (Palancz et al. (2016a)). This
stochastic term embedded into the ICING (Intensive Con-
trol Insulin-Nutrition-Glucose) (Evans et al. (2012)) model
was identified by using clinical measurements. The mean
value, the standard deviation, as well as the covariance of
the slide distributions of the stochastic glucose trajectories
generated by the Ito type processes were investigated.

2. METHODS
2.1 ICING model and its stochastic extension

ICING is a highly sophisticated deterministic model devel-
oped for critically ill patients. It has been successfully used
as a tool for in silico design of patient treatment protocols
and integrated into a real-time glycemic control advisory
system (Lin et al. (2011); Evans et al. (2012); Fisk et al.
(2012); Le Compte et al. (2012)).

The deterministic, white-box model is represented by the
following equations (Pretty (2012)),
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The model parameters values, their descriptions as well as
the exogenous input variables - functions of time - can be
found in Fisk (2014); Pretty (2012).

Model parameters were estimated and identification of the
insulin sensitivity profile, Sy (t) was achieved employing an
integral-based method Hann et al. (2005). To account for
future variability a non-parametric stochastic model based
on clinical measurements is employed (Lin et al. (2006);
Le Compte et al. (2010)). However, in this way all of the
dynamic errors were lumped into the Sy(t) profile, which
caused potentially unacceptable high frequency changes in
the blood glucose concentration profile.

To regularize the Sy(t) profile an additional stochastic
term was suggested in the glucose equation, which can
capture unmodelled dynamics and measurement noise, but
is not to be incorporated in the S (t) profile (Fisk (2014)).
It also suggested a non-parametric method to extend the
glucose equation with a stochastic term. The noise of the
residual r¢ (t) of the glucose equation Eq. (1), defined in
Eq. (8) is found to be a Gaussian-type noise (Fisk (2014)).

ra()|i=r = N(7). (8)

The blood glucose noise related to different measurement
intervals can be seen on Fig. 1. Blood glucose values mea-
sured in mmol/] are represented on the vertical axes and
the figure shows the difference between the blood glucose
measurements and the calculated blood glucose value by
the ICING model based simulation. These differences -
considered as a noise - are distributed on the horizontal
axes by the actual measurement interval of the current
measurement.

Using these results stochastic Ito version of the ICING
model equations with parametric stochastic noise term is
suggested in Paldncz et al. (2016b). The computations
of the system trajectories and their statistical features
like mean value, standard deviation, and slice distribution
were carried out using a stochastic Runge-Kutta method
in the presence of Wiener-type diffusion process term.
Parameter estimation of the resulting stochastic model is
achieved via a maximum likelihood technique. The global
optimization problem was solved using global methods
like genetic algorithms, simulated annealing and Nelder-
Mead procedures. The parameter computation has been
carried out at different system noise levels, and the optimal
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