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The paper is devoted to properties of Aumann and Itô set-valued stochastic 
integrals, defined as some set-valued random variables. In particular the problem 
of integrable boundedness of the generalized Itô set-valued stochastic integrals is 
considered. Unfortunately, Itô set-valued stochastic integrals, defined by E.J. Jung 
and J.H. Kim in the paper [5], are not in general integrably bounded (see [8,15]). 
Therefore, in the present paper we consider generalized Itô set-valued stochastic 
integrals (see [10,11]) defined for absolutely summable and countable subsets of the 
space IL2(IR+ × Ω, ΣIF, IRd×m) of all square integrable IF-nonanticipative matrix-
valued stochastic processes. Such integrals are integrably bounded and possess 
properties needed in the theory of set-valued stochastic equations.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The paper deals with properties of Aumann and Itô set-valued stochastic integrals, defined as some 
set-valued random variables. Initial studies on Itô set-valued stochastic integrals, defined as subsets of the 
spaces IL2(Ω, IRn) and IL2(Ω, X ), have been considered by F. Hiai and M. Kisielewicz (see [2,6,7]), where 
X is a Hilbert space. Unfortunately, such defined integrals do not admit their representations by set-valued 
random variables with values in IRn and X , because they are not decomposable subset of IL2(Ω, IRn)
and IL2(Ω, X ), respectively. J. Jung and J.H. Kim in [5] have defined the Itô set-valued stochastic in-
tegral as a set-valued random variable determined by a closed and decomposable hull of the set-valued 
stochastic functional integral defined in [6]. Unfortunately, such integrals are not in the general case (see 
[8,15]) integrably bounded. Therefore, in what follows we shall consider generalized Itô set-valued stochas-
tic integrals (see [10,11]) of absolutely summable countable subsets of the space IL2(IR+ × Ω, ΣIF, IRd×m)
of square integrable IF-nonanticipative matrix-valued stochastic processes defined on a complete filtered 
probability space PIF = (Ω, F , IF, P ). Generalized set-valued stochastic integrals were defined in the pa-
per [11] and some of their properties have been considered in [10]. Let us recall (see [10] and [11]) that 
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for a given m-dimensional IF-Brownian motion B = (Bt)≥0 defined on a filtered probability space PIF
and a nonempty subset G of the space IL2(IR+ × Ω, ΣIF, IRd×m), a generalized Itô set-valued stochas-
tic integral 

∫ t

0 GdBτ is understood as an Ft-measurable set-valued random variable with values in the 
d-dimensional Euclidean space IRd and subtrajectory integrals SFt

(
∫ t

0 GdBτ ) equal to decJt(G). By Jt

we denote the Itô isometry with values in the space IL2(Ω, Ft, IRd) defined for fixed t ≥ 0 and every 
g ∈ IL2(IR+×Ω, ΣIF, IRd×m) by setting Jt(g) =

∫ t

0 gτdBτ . Subtrajectory integrals SFt
(
∫ t

0 GdBτ ) of 
∫ t

0 GdBτ

are defined as a set of all Ft-measurable and square integrable selectors of 
∫ t

0 GdBτ . It will be also de-
noted by St(

∫ t

0 GdBτ ). In particular, if G is a nonempty decomposable subset of IL2(IR+ × Ω, ΣIF, IRd×m)
then 

∫ t

0 GdBτ =
∫ t

0 GτdBτ , where G = (Gt)t≥0 is an IF-nonanticipative set-valued process such that 
SIF(G) = clIL(G), where SIF(G) = {g ∈ IL2(IR+ × Ω, ΣIF, IRd×m) : gt(ω) ∈ Gt(ω) for a.e. (t, ω) ∈ IR+ × Ω}. 
In a similar way the Aumann set-valued stochastic integrals can be defined (see e.g. [9], p. 114 and [16]). 
Namely, for a given IF-nonanticipative set-valued stochastic process F : IR+ × Ω → Cl(IRd) such that 
SIF(F ) �= ∅, the Aumann set-valued stochastic integral 

∫ t

0 Fτdτ is defined as the set-valued random variable 
such that St(

∫ t

0 Fτdτ) = dec Jt(SIF(F )), where Jt denotes (for fixed t ≥ 0) the mapping with values in the 
space IL2(Ω, Ft, IRd) defined for every f ∈ IL2(IR+ × Ω, ΣIF, IRd) by setting Jt(f) =

∫ t

0 fτdτ .
Apart from the above defined Aumann set-valued stochastic integral 

∫ t

0 Fτdτ one can define (see e.g. [9,
12] and [13]) an (A)-set-valued stochastic integral (A) 

∫ t

0 Fτdτ by setting ((A) 
∫ t

0 Fτdτ)(ω) =
∫ t

0 F (τ, ω)dτ
for fixed t ≥ 0 and a.e. ω ∈ Ω, where 

∫ t

0 F (τ, ω)dτ denotes the parametrized Aumann integral, i.e., for a.e. 
fixed ω ∈ Ω the Aumann integral of F (·, ω). It can be verified (see [9], Lemma 3.1 of Chap. 3 and also [12,
13]) that (A) 

∫ t

0 Fτdτ is an Ft-measurable convex, compact valued set-valued random variable. But for a.e. 
ω ∈ Ω one has ((A) 

∫ t

0 Fτdτ)(ω) = {u(ω) : u ∈ Jt(SIF(F ))} ⊂ {u(ω) : u ∈ decJt(SIF(F ))} ⊂ (
∫ t

0 Fτdτ)(ω). 
It can be verified (see [9], Corollary 3.1 of Chap. 3) that for every measurable, convex-valued and integrably 
bounded set-valued process F : IR+ ×Ω → Cl(IRd) one has ((A) 

∫ t

0 Fτdτ)(ω) = (
∫ t

0 Fτdτ)(ω) for a.e. ω ∈ Ω
and t ≥ 0. For other properties of (A) 

∫ t

0 Fτdτ we refer the reader to [9,12] and [13].
Let us assume that G = {gn : n ≥ 1} ⊂ IL2(IR+ × Ω, ΣIF, IRd×m) is absolutely summable, i.e. ∑∞
n=1 ‖gn‖2 < ∞, where ‖ · ‖ is a norm of IL2(IR+ × Ω, ΣIF, IRd×m). Then a generalized set-valued in-

tegral 
∫ t

0 GdBτ can be defined for every t ≥ 0 as a set-valued random variable Ht : Ω → Cl(IRd)
of the form Ht(ω) = cl{(

∫ t

0 gnτ dBτ )(ω) : n ≥ 1} for every ω ∈ Ω. Indeed, it is clear, that for ev-
ery t ≥ 0 a sequence (

∫ t

0 gnτ dBτ )∞n=1 is the Castaing representation of a set-valued random variable Ht. 
Furthermore we have supn≥1 E[| 

∫ t

0 gnτ dBτ |2] ≤
∑∞

n=1 ‖gn‖2 < ∞. Then (
∫ t

0 gnτ dBτ )∞n=1 is a bounded 
sequence of IL2(Ω, Ft, IRd) contained in St(Ht). Therefore, by ([9], Remark 3.6 of Chap. 2), we have 
St(Ht) = dec{

∫ t

0 gnτ dBτ : n ≥ 1} = dec{Jt(gn) : n ≥ 1} = decJt(G) = St(
∫ t

0 GdBτ ). Then Ht =
∫ t

0 GdBτ

a.s. for every t ≥ 0.
Let us also note that for such a set G = {gn : n ≥ 1}, a stochastic process (

∑∞
n=1 | 

∫ t

0 gnτ dBτ |2)t≥0 is a pos-
itive submartingale. Firstly, let us observe that such a set G is bounded in IL2(IR+×Ω, ΣIF, IRd×m), because 
supn≥1 ‖gn‖2 ≤

∑∞
n=1 ‖gn‖2 < ∞. Now, for a fixed t ≥ 0, let us put ξtn =

∑n
k=1 | 

∫ t

0 gkτ dBτ |2 where n ≥ 1 and 

ξt =
∑∞

n=1 | 
∫ t

0 gnτ dBτ |2. Let m =
∑∞

n=1 ‖gn‖2. We have ξtn ≤ ξt a.s. and Eξtn ≤ m < ∞ for every n ≥ 1 and 
t ≥ 0. Therefore, supn≥1 E[1Aξ

t
n] → 0 as P (A) → 0. Then the sequence (ξtn)∞n=1 of positive random variables 

converges to ξt a.s. for every fixed t ≥ 0 and it is such that limn→∞ E[ξtn|Fs] = E[ξt|Fs] a.s. for every 0 ≤ s <
t < ∞. On the other hand limn→∞ E[ξtn|Fs] = limn→∞

∑n
k=1 E[| 

∫ t

0 gkτ dBτ |2|Fs] =
∑∞

n=1 E[| 
∫ t

0 gnτ dBτ |2|Fs]
a.s. for every 0 ≤ s < t < ∞. Thus E[

∑∞
n=1 | 

∫ t

0 gnτ dBτ |2|Fs] =
∑∞

n=1 E[| 
∫ t

0 gnτ dBτ |2|Fs] a.s. for every 
0 ≤ s < t < ∞. Finally, by Jensen’s inequality we get E[| 

∫ t

0 gnτ dBτ |2|Fs] ≥ | 
∫ s

0 gnτ dBτ |2 a.s. for every 
n ≥ 1 and 0 ≤ s < t < ∞. Therefore, we have 

∑∞
n=1 | 

∫ s

0 gnτ dBτ |2 ≤ E[
∑∞

n=1 | 
∫ t

0 gnτ dBτ |2|Fs] a.s. for every 
0 ≤ s < t < ∞.

Let (X, ρ) be a metric space and denote by Cl(X) a space of all nonempty closed subsets of X. For 
every A, C ∈ Cl(X) let h(A, C) = sup{d(a, C) : a ∈ A}, where d(a, C) = inf{ρ(a, c) : c ∈ C}. The 
Hausdorff distance h(A, C) between A, C ∈ Cl(X) is defined by h(A, C) = max{h(A, C), h(C, A)}. It can 
be verified (see [2], p. 24) that for every sequence (An)n≥1 ⊂ Cl(X) converging in the Hausdorff metric 
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