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a b s t r a c t 

Electron tomography (ET) has become a standard technique for 3D characterization of materials at the 

nano-scale. Traditional reconstruction algorithms such as weighted back projection suffer from disrup- 

tive artifacts with insufficient projections. Popularized by compressed sensing, sparsity-exploiting algo- 

rithms have been applied to experimental ET data and show promise for improving reconstruction qual- 

ity or reducing the total beam dose applied to a specimen. Nevertheless, theoretical bounds for these 

methods have been less explored in the context of ET applications. Here, we perform numerical simula- 

tions to investigate performance of � 1 -norm and total-variation (TV) minimization under various imaging 

conditions. From 36,100 different simulated structures, our results show specimens with more complex 

structures generally require more projections for exact reconstruction. However, once sufficient data is 

acquired, dividing the beam dose over more projections provides no improvements—analogous to the 

traditional dose-fraction theorem. Moreover, a limited tilt range of ±75 ° or less can result in distorting 

artifacts in sparsity-exploiting reconstructions. The influence of optimization parameters on reconstruc- 

tions is also discussed. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Electron tomography (ET) attempts to reconstruct the 3D struc- 

ture of physical and biological materials from an angular range of 

2D images collected by a (scanning) transmission electron micro- 

scope ((S)TEM) [1–8] . The set of images is often referred to as a 

tilt series and modeled as projections of the original object. Unfor- 

tunately, in typical ET experiments, radiation damage, contamina- 

tion, and acquisition time limit the signal-to-noise ratio (SNR) and 

the number of projections (ca. ∼70–140). Furthermore, specimen 

and stage geometry usually restrict the tilt range (ca. ±70 °), leav- 

ing a large missing wedge of information in Fourier space. Conse- 

quently, conventional reconstruction algorithms, such as weighted 

back projection, that only make use of measured data suffer from 

elongation and blurring artifacts that are disruptive to accurate 

characterizations. 

Recently, there is a growing interest in developing reconstruc- 

tion techniques that incorporate additional prior knowledge about 

the specimen [9–11] . Inspired by the field of compressed sensing, 
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a majority of these methods [11–15] exploit the notion of image 

sparsity and obtain reconstructions via minimizing the � 1 -norm of 

the object vector in some domain. Unlike back projection, sparsity- 

exploiting methods have considerable flexibility in designing re- 

constructions based on users’ assumptions about the specimen as 

well as the desired utility of the reconstruction [16] . A typical form 

of the optimization problem can be written as 

where x and b represent the reconstructed image and measured 

data. A is referred to as the “measurement matrix ”, which mod- 

els the experimental imaging process and depends on sampling 

schemes such as pixel/voxel size, the number of projections and 

tilt range. A scalar “data-tolerance parameter ” ɛ is introduced to ac- 

commodate inconsistencies between data ( b ) and imaging model 

( Ax ). Higher SNR data generally allows a smaller ɛ to be used be- 

cause there are fewer discrepancies between the measured data 
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and the reconstruction model. The function D ( x ) transforms the 

reconstruction to a domain in which the object is assumed to 

be sparse. Two most popular transformations are identity ( D (x ) = 

x ) and gradient magnitude ( D (x ) = ∇ x 2 ). The � 1 -norm of the 

gradient-magnitude image is also known as the TV-norm ( x TV ) 

[17] and has been used in image processing and reconstruction al- 

gorithms for over two decades [18,19] . Furthermore, for STEM to- 

mography, it is also beneficial to enforce additional constraint that 

restricts pixels/voxels to be non-negative. 

To date, several experimental works have demonstrated that 

sparsity-exploring methods can reduce artifacts and improve over- 

all reconstruction quality [11,12,14] for under-sampled data. Never- 

theless, theoretical limitations of such algorithms are seldom dis- 

cussed in the context of ET, especially when and how they fail. In 

essence, the reconstruction (a solution of the optimization prob- 

lem) can be interpreted as a multivariable function that depends 

on A, b , and ε. Different experimental conditions, such as sampling 

scheme or data quality, and the data-tolerance parameter can lead 

to significantly different reconstructions. It is generally onerous, if 

not impossible, to explore the entire parameter space when char- 

acterizing optimization-based reconstructions. Thus, in this work, 

we carry out extensive simulation studies of both x 1 and x TV min- 

imization techniques and investigate four key parameters that are 

of practical interests: number of projections, data-tolerance param- 

eter, data noise, and tilt range. Our results demonstrate some fun- 

damental behaviors of sparsity-exploiting methods: 

1. The number of projections required for exact reconstruction in- 

creases with specimen complexity. 

2. In the presence of Poisson noise, the quality of sparsity- 

exploiting reconstructions degrades quickly. With a sufficient 

number of projections, the root-mean-square error (RMSE) of 

the reconstruction depends only on the total electron counts 

(i.e. dose). Using more projections with lower SNR has in- 

significant influence on the reconstruction. This resembles the 

traditional dose-fraction theorem for weighted back projection 

[20,21] . 

3. Sparsity-exploiting reconstructions suffer from distorting arti- 

facts when the tilt range is less than ±75 °. 
4. The data-tolerance parameter also has significant impact on re- 

constructions. For TV minimization, small ε can produce noisy 

artifacts, while large ε results in over-smoothed reconstruc- 

tions. 

These results provide basic insights on data acquisition and re- 

constructions for ET. Because the number of projections required 

for sparsity-exploiting reconstruction is specimen-dependent, one 

should be cautious when reducing the number of projections or 

tilt range in practical experiments. With proper choice of the op- 

timization parameter, however, sparsity-exploiting reconstructions 

are robust to a small missing wedge ( ∼30 °, i.e. tilt range of greater 

than ±75 °) and follow the traditional dose-fraction theorem. In- 

creasing data SNR generally improves reconstruction quality. 

2. Background 

2.1. Image model for ET 

Most optimization-based reconstruction methods are built upon 

the discrete-to-discrete model [22] in which both image ( x ) and data 

( b ) are represented as vectors and related via the measurement 

matrix as Ax = b (Eq. (1). In this model, tomographic reconstruc- 

tion is an inverse problem of solving x for a given system of linear 

equations. 

In ET, each measurement is often interpreted as line integrals 

(i.e. a projection) across the specimen [23] . If data is ideal , that is, 

b = Ax , one can define a sufficient projection number as the small- 

est number of projections that gives a full rank measurement ma- 

trix [24] , which guarantees that Eq. (1) has a unique solution. 

Due to experimental limitations, the sufficient projection number 

is rarely achieved in practice. For instance, in order to reconstruct 

a 512 × 512 image from data with 1024 measurements in each pro- 

jection, one needs to record at least 256 projections (the exact 

number depends on how A is constructed). To overcome data in- 

sufficiency, additional knowledge beyond Eq. (1) needs to be incor- 

porated into the imaging model so that the reconstruction is closer 

to the actual specimen. 

2.2. Sparse model and compressed sensing 

The notion of sparsity has become widely used in optimization- 

based reconstruction techniques. Mathematically, sparsity refers to 

the number non-zero elements in a vector (also known as the � 0 - 

norm). A sparse model assumes only a small fraction of the ele- 

ments in the image vector ( x ), or some transform of it, are non- 

zero. Because direct � 0 -norm minimization is NP-hard [25] , al- 

ternative approaches have been developed to approximate sparse 

solutions. In 2002, Li et al. [26] used an � 1 -norm minimization 

method to reconstruct sparse blood vessels from 15 X-ray com- 

puted tomography (CT) projections. The idea of � 1 -norm minimiza- 

tion is further reinforced by the work of Candes et al. [27] , which 

proved that if the measurement matrix satisfies a restricted isom- 

etry property (RIP), it is highly probable the sparsest solution and 

minimal � 1 -norm solution are equivalent, given there are enough 

non-zero measurements. This result led to the field of compressed 

sensing [27,28] and re-invigorated developments in optimization- 

based methods. 

Despite the popularity of compressed sensing, its theoretical 

conclusions are of limited use in practice. It is well known that 

compressed sensing typically favors dense and random measure- 

ment matrices [29] . In ET or X-ray CT, on the other hand, measure- 

ment matrices are much more sparse and structured (See Fig. 1 

in ref. [38] . Studies using radon transforms have shown not only 

the existence of sparse vectors that cannot be reconstructed by 

� 1 -norm minimization [30] , but RIP-based guarantee only holds 

for extremely sparse vectors [31] . Moreover, it is computationally 

intractable (NP-hard) to examine whether a measurement matrix 

satisfies the properties required by compressed sensing [32] . With- 

out theoretical guarantees, it is imperative to carry out simulation 

studies using an ensemble of objects with well-defined features to 

understand the recoverability of any algorithm. 

3. “Phase diagram” analysis for � 1 -norm minimization 

In this section, we perform a “phase diagram” analysis to 

study the recoverability of � 1 -norm minimization method at var- 

ious imaging conditions. Adapting the work by Jørgensen et al. 

[33,34] , we establish an average-case relation between image spar- 

sity and the number of projections needed for exact reconstruc- 

tion. In Fig. 1 , the simulation results are summarized as a function 

of the percentage of non-zero pixels ( k ) of the object intensity and 

relative sampling ( μ), which is defined as the ratio of the number 

of projections to the sufficient projection number. For each pair 

of ( k , μ) in this phase space, we generate 100 semi-realistic test 

objects with similar complexity. Details of object generation are 

summarized in supporting information and the source code is in- 

cluded in the tomography software tomviz ( www.tomviz.org ) [49] . 

For ideal data, a reconstruction is obtained by solving the basis 

pursuit optimization problem: min || x || 1 s.t. Ax = b [36] . A total of 

36,100 different structures are used in the phase diagram and we 

report the percentage of “accurate” reconstructions whose RMSE 

are less than 0.05 in Fig. 1 a. 
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