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a b s t r a c t 

This paper presents a method for clustering time-dependent blood flow data, represented by path lines, 

in cerebral aneurysms using a reliable similarity measure combined with a clustering technique. Such 

aneurysms bear the risk of rupture, whereas their treatment also carries considerable risks for the pa- 

tient. Medical researchers emphasize the importance of investigating aberrant blood flow patterns for 

the patient-specific rupture risk assessment and treatment analysis. Therefore, occurring flow patterns 

are manually extracted and classified according to predefined criteria. The manual extraction is time- 

consuming for larger studies and affected by visual clutter, which complicates the subsequent classifi- 

cation of flow patterns. In contrast, our method allows an automatic and reliable clustering of intra- 

aneurysmal flow patterns that facilitates their classification. We introduce a similarity measure that 

groups spatio-temporally adjacent flow patterns. We combine our similarity measure with a commonly 

used clustering technique and applied it to five representative datasets. The clustering results are pre- 

sented by 2D and 3D visualizations and were qualitatively compared and evaluated by four domain 

experts. Moreover, we qualitatively evaluated our similarity measure. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 1 

For the diagnosis and treatment assessment of cardiovascular 2 

diseases (CVDs), the analysis of patient-specific morphological and 3 

hemodynamic data is necessary [1] . This work focuses on cerebral 4 

aneurysms, characterizing pathologic dilatations of intracranial ar- 5 

teries. Their most serious consequence is their rupture leading to 6 

a subarachnoid hemorrhage (SAH), which is associated with a high 7 

mortality and morbidity rate [2] . In case of a rupture, a treatment 8 

is essential. A frequently used treatment option is stenting , where 9 

the flow is diverted from the aneurysm sac by an expandable med- 10 

ical implant (stent). However, treatment is also associated with a 11 

considerable risk of severe complications, such as post-treatment 12 

hemorrhaging, which can exceed the natural rupture risk [3] . In 13 

most cases an aneurysm is asymptomatic and will never rupture. 14 

But due to the poor prognosis of a SAH, aneurysms are usually 15 

treated. Thus, it is highly desirable to better understand the indi- 16 

vidual rupture risk and to restrict treatment to high-risk patients. 17 
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Unfortunately, the aneurysm progression and rupture depends 18 

on different factors such as genetics, morphological conditions and 19 

hemodynamics, where their interplay is not well understood [4] . 20 

Hemodynamic data are characterized by quantitative parameters 21 

such as Wall Shear Stress (WSS), and qualitatively, e.g., w.r.t. spe- 22 

cific flow patterns, such as vortices. Moreover, flow patterns are 23 

assumed to be related to the success of treatment and their dis- 24 

tance to the vessel wall seems to be an important factor for the 25 

assessment of the aneurysm’s state [5] . 26 

To investigate the influence of flow patterns on the aneurysm’s 27 

rupture, medical studies are performed [6] . Therefore, hemody- 28 

namic information are used that can be obtained by Computational 29 

Fluid Dynamic (CFD) simulations. Flow patterns are extracted and 30 

manually classified according to their complexity and stability dur- 31 

ing the cardiac cycle. The results were compared between ruptured 32 

and non-ruptured cases to identify characteristics associated with 33 

rupture. This is a time-consuming process in which flow patterns 34 

more distant to the wall are easily overlooked due to visual clut- 35 

ter and occlusion. To uncover correlations between flow patterns 36 

and the aneurysm state, more efficient analysis techniques are es- 37 

sential. This requires a reliable grouping of blood flow-representing 38 

path lines characterizing individual flow patterns. 39 
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In this work, we present a method for an automatic clustering 40 

of blood flow in cerebral aneurysms over the cardiac cycle. Blood 41 

flow-representing path lines were integrated in simulated CFD data 42 

and clustered to obtain groups with similar flow behavior. For this 43 

purpose, we extend an established similarity measure for stream- 44 

lines to path lines that incorporates their temporal component. To 45 

explore the behavior of individual flow patterns, we provide 2D 46 

views linked to a 3D depiction of the aneurysm wall and inter- 47 

nal blood flow. The 2D views enable an occlusion-free visualization 48 

of flow patterns, including their distance to the vessel wall. The 49 

3D visualization represents the focus upon which the exploration 50 

of morphological aneurysm characteristics together with the blood 51 

flow information over the cardiac cycle takes place. We integrate 52 

these techniques into a framework that we developed in collabo- 53 

ration with domain experts. In summary, we make the following 54 

contributions: 55 

• An automatic clustering of intra-aneurysmal flow patterns over 56 

the cardiac cycle. 57 

• A linked 2D and 3D view of the aneurysm surface and internal 58 

flow patterns for an interactive exploration. 59 

2. Related work 60 

Our work is related to partition-based blood flow visualization, 61 

as well as the visual exploration of aneurysm data. 62 

2.1. Partition-based flow visualization 63 

Partitioning techniques decompose flow into areas of common 64 

structure to investigate hemodynamics. Graphical representatives 65 

of flow regions can be computed to generate a visual summary or a 66 

subsequent visualization can be restricted to regions with specific 67 

properties, e.g., vortices. Such techniques are mainly based on inte- 68 

gral curves, since in contrast to local vectorial flow data, they rep- 69 

resent continuous flow patterns. The partitioning is performed in 70 

a user-guided [7–9] or automatic fashion [10–14] . Less frequently, 71 

local flow vectors [15] or aneurysm wall properties [16,17] are 72 

employed. 73 

User-guided techniques partition integral curves based on line 74 

predicates (LP) [18] , which are Boolean functions that decide if in- 75 

tegral curves fulfill properties of interest. Gasteiger et al. [8] ap- 76 

plied LP to CFD data of cerebral aneurysms to extract flow fea- 77 

tures, e.g., the inflow jet – the structure of high-speed, parallel 78 

aneurysm inflow and the impingement zone – the region where the 79 

inflow jet hits the wall with high impact. Based on this, a compar- 80 

ative visualization for evaluating various stent configurations was 81 

presented, integrating morphological and hemodynamic data [19] . 82 

Born et al. [7] utilized LP to identify relevant flow features such as 83 

jets and vortices in measured cardiac data. Köhler et al. [9] used 84 

different local vortex criteria as LP to filter path lines that repre- 85 

sent aortic vortices. 86 

Automatic techniques employ a data-driven approach and 87 

utilize clustering methods to group integral curves based on a 88 

similarity measure. McLoughlin et al. [14] introduced a streamline 89 

similarity measure by computing geometrical features based on 90 

the underlying vector field and used an agglomerative hierarchical 91 

clustering (AHC) with average link for partitioning. Their method 92 

was applied to time-dependent data by extracting the geometrical 93 

features from the vector field of the corresponding time step. How- 94 

ever, the temporal component was not directly considered. Two 95 

geometrically similar path lines occurring in non-overlapping time 96 

intervals would have a high similarity. Oeltze et al. [13] compared 97 

multiple streamline clusterings in the context of aneurysm hemo- 98 

dynamics. Streamline similarities were computed based on line ge- 99 

ometry [20] . They conducted a quantitative evaluation of k-Means, 100 

AHC, and spectral clustering (SC) w.r.t. cluster purity measures, 101 

where SC as well as AHC with average link and Ward’s method 102 

performed best. Furthermore, a visual summary of blood flow was 103 

proposed, containing one representative streamline per cluster to 104 

reduce visual clutter. Englund et al. [10] employed a partitioning 105 

approach for the exploration of aortic hemodynamics. They used 106 

the Finite-time Lyapunov Exponent to measure the separation of 107 

path lines and coherent areas are derived. Liu et al. [11] measured 108 

path line similarities using an octree. The space is divided into 109 

cubes either by equidistant length or by adaptive length that 110 

depends on the features of the underlying vector field. A sequence 111 

is assigned to the path lines that incorporates the passed cubes, 112 

where the similarity is based on the longest common sequence. 113 

Meuschke et al. [12] compared multiple clustering methods of 114 

path lines representing aortic vortex flow. Path line similarities 115 

were computed based on the spatio-temporal coordinates of line 116 

endpoints and the line’s average distance to the vessel centerline. 117 

AHC with average link performed best in separating vortices. 118 

We introduce a time-dependent clustering of flow-representing 119 

path lines by extending an eligible approach for streamline clus- 120 

tering [20] . In contrast to the streamline similarity measure by 121 

McLoughlin et al. [14] , our method directly incorporates the tem- 122 

poral component. If a flow pattern occurs, decays and reoccurs dur- 123 

ing the cardiac cycle, our method results in several clusters. This is 124 

required, since stability of flow patterns is an important criterion 125 

in medical studies to predict the rupture risk [6] . Existing meth- 126 

ods are not able to represent instable flow patterns by different 127 

clusters. Moreover, compared to existing time-dependent cluster- 128 

ing approaches [11,12] , we are not dependent on the centerline or 129 

the underlying partitioning of the space. 130 

2.2. Visualization and exploration of aneurysms 131 

To visualize the aneurysm morphology, Hastreiter 132 

et al. [21] presented a direct volume rendering (DVR) method. 133 

Tomandl et al. [22] introduced a standardized vessel depiction 134 

using DVR for a more objective assessment of the aneurysm 135 

morphology. 136 

Several works parametrize the aneurysm surface to generate 137 

more abstract representations. Goubergrits et al. [23] mapped the 138 

aneurysm to a uniform sphere to analyze statistical WSS distribu- 139 

tions. Meuschke et al. [24] generated a 2D aneurysm map by using 140 

least squares conformal maps [25] that provides an occlusion-free 141 

overview visualization. Tao et al. [26] presented the VesselMap , a 142 

2D mapping of an aneurysm and parent vasculature formulated as 143 

a graph layout optimization problem. 144 

For the simultaneous exploration of anatomical and vectorial 145 

flow data, Gasteiger et al. [27] introduced the FlowLens , an in- 146 

teractive focus-and-context approach. However, outside the lens 147 

area, the flow cannot be observed. To improve this, Lawonn 148 

et al. [28] provided a vessel visualization such that the morphology 149 

can be better perceived and the flow is always visible. For a more 150 

detailed analysis, Neugebauer et al. [17] developed a qualitative ex- 151 

ploration of near-wall hemodynamics in cerebral aneurysms. Sev- 152 

eral 2D widgets are used to simplify streamlines at different sur- 153 

face positions. Gambaruto et al. [29] analyzed flow features that 154 

are potentially related to aneurysm rupture. They extracted criti- 155 

cal points related to WSS, vortices and surface shear lines, which 156 

are visualized using standard techniques such as glyphs, vortex- 157 

isosurfaces, and streamlines. Lawonn et al. [30] presented a frame- 158 

work for an occlusion-free blood flow visualization by using illus- 159 

trative techniques. Meuschke et al. [24] extended this approach to 160 

investigate morphological and hemodynamic data simultaneously 161 

by providing a low-occlusion 2.5D view linked to a 3D aneurysm 162 

depiction. 163 
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