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Abstract

This paper introduces an unsupervised method for the classification of discrete rovers’ slip events based on proprioceptive signals. In
particular, the method is able to automatically discover and track various degrees of slip (i.e. low slip, moderate slip, high slip). The
proposed method is based on aggregating the data over time, since high level concepts, such as high and low slip, are concepts that
are dependent on longer time perspectives. Different features and subsets of the data have been identified leading to a proper clustering,
interpreting those clusters as initial models of the prospective concepts. Bayesian tracking has been used in order to continuously
improve the parameters of these models, based on the new data. Two real datasets are used to validate the proposed approach in com-
parison to other known unsupervised and supervised machine learning methods. The first dataset is collected by a single-wheel testbed
available at MIT. The second dataset was collected by means of a planetary exploration rover in real off-road conditions. Experiments
prove that the proposed method is more accurate (up to 86% of accuracy vs. 80% for K-means) in discovering various levels of slip while
being fully unsupervised (no need for hand-labeled data for training).
� 2017 ISTVS. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Safely accessing rough and steep terrain is essential to
expand access of current and future rovers to planetary
surface regions of high scientific value. This goal will reveal
clues to the geological, climate, and life history of these
bodies and will enable human operations. In particular,
challenging terrain such as craters and fault-bounded walls
offer natural exposures of the bedrock stratigraphic record,
which is key to understanding the geologic record and how
environmental and other processes varied over time.

Steep terrain mobility, however, is not limited only to
hard surfaces such as cliff faces. Steep terrains can be com-
prised of loose material at an angle of repose. In this con-
text, one key phenomenon is slip (Angelova et al., 2007;
Gonzalez et al., 2014; Iagnemma et al., 2004; Iagnemma
and Ward, 2009). Slip means a loss of traction of a wheeled
vehicle, which may eventually lead to vehicle entrapment.
Notice that the current NASA’s Curiosity rover was sub-
ject to high slip on sol 672 (June 27, 2014) while crossing
sandy ripples (Arvidson et al., 2016). At that time, the algo-
rithm developed by one of the co-authors of this paper, Dr.
Iagnemma, halted the progress of Curiosity and waited for
instructions from the JPL1 control center. Even though this
algorithm has demonstrated its success, it is only valid for
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traverses over simple, flat courses. Then, it has a limited
applicability.

Several researchers have focused on methods to estimate
wheel slip by analyzing wheel encoder or torque data
(Ojeda et al., 2006), however this technique required
terrain-specific parameter tuning, which is undesirable.
One of the most extended techniques to estimate rover slip
is based on Visual Odometry (VO) (Angelova et al., 2007;
Gonzalez et al., 2014; Maimone et al., 2007). Although VO
can be an accurate method for slip measurement, it is com-
putationally expensive, which can negatively impact the
mean rover drive speed. A second limitation of VO is that
on featureless scenarios (e.g. sand dunes), the number of
detected and tracked features is low, what can lead to poor
accuracy of motion estimate (Johnson et al., 2008). Most
recently, researchers have developed methods to estimate
slip via stochastic modeling, however, this work was
applied to terrestrial systems and thus relies on GPS posi-
tion data (Rogers-Marcovitz et al., 2012). A potentially
simple approach to estimating rover body velocity (and
thus slip) is to integrate body acceleration measurements.
However, even with high-quality inertial sensing, accurate
estimation of body velocity is subject to error and drift
(Iagnemma and Ward, 2009). A potentially simple
approach for detecting robot slip is based on training
machine learning algorithms to recognize distinct levels
of slip using proprioceptive signals (Brooks and
Iagnemma, 2012, 2005; Gonzalez et al., 2016, 2017;
Iagnemma and Ward, 2009; Weiss et al., 2007). These
approaches have demonstrated a significant efficiency both
in accuracy and in a fast computation. This is the reason
why this paper focuses on machine learning algorithms
based on proprioceptive signals.

Most of the existing machine learning tasks nowadays
focus on information that has been analyzed by human
experts who supervise the system and define its goals. How-
ever, this leads such systems to possibly break in an
unknown environment or when the context changes. In
particular, for a planetary exploration rover, correct
responses of certain concepts (e.g. high slip instances) can-
not be provided, and therefore, supervised machine learn-
ing cannot be employed. In this work, we are interested
in designing systems that require less supervision and are
able to automatically discover important underlying con-
cepts of interest. In this context, unsupervised machine
learning can autonomously discover hidden conceptual
structures in the data, commonly referred to as clusters.
Such unsupervised algorithms identify similarities between
the inputs so that inputs that have something in common
are categorized together. Therefore, this can reveal con-
cepts such as high/low slip, without any supervision from
human experts. Based on such slip levels, one can evaluate
the behavior of the rover and take actions accordingly. As
an example, a popular unsupervised learning algorithm,
self-organizing maps, is exploited in Gonzalez et al.
(2017) for slip detection, and does not require high-level
slip features in order to create a model of the slip process.

Traditionally, unsupervised learning methods are
directly applied on raw data (i.e., original signals).
Nonetheless, concepts such as slip level do not clearly man-
ifest in individual sensor readings, but are only discernible
over longer periods of time, based on multiple features
extracted from the raw data. In this paper, an unsupervised
approach for tracking the slip level of planetary explo-
ration rovers based on proprioceptive signals is con-
tributed. The use of proprioceptive sensors represents an
interesting alternative to the traditional vision-based
approaches, as these approaches demand a high computa-
tion and even the visual-odometry-based algorithm may
fail in featureless scenarios.

A combination of three important ideas is followed: (i),
we aggregate the signals over time into a number of statis-
tical features that represent longer periods of interest, suf-
ficient for the concepts of interest to emerge; (ii), we use
unsupervised clustering over these new features, instead of
using the original signals; and (iii) we apply Bayesian track-

ing (Arulampalam et al., 2002), back on the original sig-
nals, with the clusters as seeds, to more accurately follow
transitions between slip levels.

This paper is organized as follows. In Section 2, we pre-
sent the data collection and feature selection based on sen-
sor readings. In Section 3, we present our proposed
approach. In Section 4, we present the experimental evalu-
ation. Finally, we conclude and present future work in
Section 5.

2. Data preparation

Data preparation is a crucial step in any machine learn-
ing process (Marsland, 2015). This section presents the
data collection and the selection of features that are conve-
nient for our study. A video with the two settings used for
collecting the datasets, that is, the MIT single-wheel
testbed and the real planetary exploration rover, is avail-
able online at: http://web.mit.edu/mobility/videos/embed-
dingMIT_PI.mp4. Notice that in this work, slip is defined
as the difference between the angular velocity measured
by a wheel, x, and the linear velocity of the wheel’s center,
v, that is, slip ¼ xr�v

xr , where x is the angular wheel velocity

and r is the wheel radius (Wong, 2001).

2.1. Data collection for the MIT single-wheel testbed

The first data set used in this paper was collected using a
single-wheel testbed developed by the Robotic Mobility
Group at MIT. The system limited the wheel movement
primarily to its longitudinal direction. By driving the wheel
and carriage at different rates, variable slip ratios can be
imposed (Fig. 1a). The bin dimensions are 3.14 [m] length,
1.2 [m] width, and 0.5 [m] depth.

It bears mentioning that the wheel in use for the exper-
imentation was the Mars Science Laboratory (MSL) flight
spare wheel. The sensing system of the testbed is composed
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