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This study extends a frequency domain modified spectral element method (SEM) from single-span beams
to multi-span beams subjected to moving point forces. Each span is represented by the Timoshenko beam
model. The time history of the moving point force is transformed to the frequency domain as a series of
quasi-static or stationary point forces acting on the beam simultaneously. The dynamic responses are
obtained by superposing the individual dynamic responses excited by each quasi-static point force.
The SEM based on the original one-element method provides the exact individual dynamic responses
of all spans except for the span on which the quasi-static point force is located. Thus, the exact dynamic
responses for this span are obtained based on the modified one-element method by adding some correc-
tion terms that are given in closed analytical forms. The method is highly accurate and computationally
efficient, as verified by comparison with other techniques such as exact theory, modal analysis method,
and finite element method.
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1. Introduction

Beam structures subjected to moving loads may experience sev-
ere vibration that could result in structural failure. Examples of
such structures include bridges and overhead cranes. Thus, accu-
rate and efficient prediction of this vibration is very important
for successful design and maintenance of such structures.

Numerous dynamic analysis methods have been proposed to
predict the vibrations of beam structures subjected to moving
loads. These include integral transforms [1-3], mode superposition
or modal analysis [4-11], the transfer matrix [12-14], the general-
ized moving least square method [15], the Lagrange equation
[16,17], the U-transformation and mode method [ 18], the modified
beam vibration function [19], the Galerkin method [20], the finite
element method (FEM) [21,22], the finite difference method [23],
the dynamic stiffness method [24], and the frequency domain
spectral element method [25-27].

The application of analytical methods is limited to very simple
moving load problems, and computational methods, such as FEM
have been widely used for most practical moving load problems.
However, FEM generally requires a very fine structural discretiza-
tion to obtain accurate solutions, particularly at high frequencies.
This is necessary because the shape functions used in FEM are
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independent of the vibrating frequencies of a structure. In contrast
to FEM, the frequency-domain spectral element method (SEM)
provides extremely accurate solutions by representing a uniform
beam structure member as a single finite element, regardless of
its length [28,29]. This is accomplished by using the exact dynamic
stiffness matrix as the stiffness matrix, which is formulated using
the frequency-dependent shape functions derived from exact free
wave solutions that satisfy the governing equations of motion.

Despite the extremely high accuracy and efficiency of SEM, very
few studies have applied it to moving load problems [25-27]. Azizi
et al. [25] seem to be the first to apply SEM to the dynamic analysis
of continuous beams and bridges subjected to a moving force. A
uniform beam structure was discretized into a large number of
finite elements (more than two) and a moving point force was rep-
resented by effective nodal forces and moments acting on the two
nodes of a finite beam element. This approach was commonly used
in FEM-based dynamic analysis. However, it did not fully exploit
the key advantages of SEM. Moreover accurate solutions could
not be obtained because the effective nodal forces and moments
are not mechanically equivalent to the original point force. The sta-
tic Green's function was necessary for improving the solutions. Sar-
vestan et al. [26] later applied the same SEM technique to the
vibration analysis of a cracked Bernoulli-Euler beam subjected to
a moving load.

Recently, Song et al. [27] proposed a new SEM-based technique
for beams subjected to a moving point force. They represented a
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moving point force in the frequency domain as a series of quasi-
static point forces and superposed all the individual dynamic
responses to obtain the exact dynamic responses. Accurate individ-
ual dynamic responses were obtained by representing a beam sub-
jected to a quasi-static point force by two finite elements. Thus, a
quasi-static point force was considered a nodal force acting on
the joint node of two finite elements; this is called the two-
element method.

A new SEM-based dynamic analysis technique, called the mod-
ified one-element method, was developed to avoid the structural
discretization required for the two-element method [30]. This
method was applied to uniform Timoshenko beams subjected to
stationary dynamic forces. The modified one-element method pro-
vides accurate solutions by adding correction terms to the solu-
tions obtained by the one-element method. The correction terms
were given in analytical forms. The one-element method is an
approach that is most commonly used in FEM, where a beam seg-
ment subjected to a point force is represented by a single finite ele-
ment and the point force is represented by effective nodal forces
and moments applied at the two nodes of the finite element. To
the best of our knowledge, the modified one-element method
has not been applied to the dynamic analysis of a beam subjected
to a moving force.

Thus, the purpose of this study is to apply the modified one-
element method to the dynamic analysis of multi-span beams sub-
jected to a moving point force. Section 2 presents the problem
statement, and Section 3 a frequency-domain representation of a
moving point force as a series of quasi-static point forces. Section 4
presents the general procedure of dynamic analysis, and Section 5
various dynamic analysis methods for a multi-span beam sub-
jected to a quasi-static point force. In Section 6, we discuss the
derivation of frequency-domain dynamic responses using the
modified one-element method. Section 7 presents numerical
results that demonstrate the high accuracy and computational effi-
ciency of the method in comparison with other techniques. The
effects on the dynamic responses of single-span and multi-span
beams of various parameters are investigated, including the
boundary conditions, the moving speed and acceleration of a point
force, and the time intervals of a series of moving point forces. Sec-
tion 8 summarizes the results of the study.

2. Problem statement

A multi-span beam subjected to a moving point force is shown
in Fig. 1. The transverse point force has constant magnitude P. The
beam is made of elastic materials, and the vibration amplitudes are
small. The beam consists of a total of Q spans, and its total length is
L. The length of each span is denoted by I, whereq=1,23,...,Q.In
Fig. 1, two axial coordinates are introduced: the global coordinate X
for the entire multi-span beam (with the origin at the left end of
the first span) and the local coordinate x for a specific span (with
the origin at the left end of the specific span). The current position
of the moving point force with respect to the global coordinate is S
(t), whereas the distance from the left end of the first span (X = 0)
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to the right end of the g-th span is X;. Using Timoshenko beam the-
ory, the equations of motion for a uniform beam subjected to a
transverse moving point force P can be written as
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where w(X, t) and 0(X, t) are the transverse displacement and the
slope, respectively; p is mass density; A and I are cross-sectional
area and the area moment of inertia, respectively; E and G are
Young’s modulus and shear modulus, respectively; and x is the
shear correction factor. In Eq. (2), 6(X) is the delta function [31].

3. Representation of a moving point force in the frequency
domain

Using both the discrete Fourier transform theory (DFT) [32] and
the discrete representation of a continuous function by delta func-
tions [33], the moving point force f(X, t) in Eq. (2) can be trans-
formed into the frequency domain as follows [27]:

N-1
F(X,) = Fad(X = Sy) (4)
n=0
where
Fp=Pe™" (n=0,1,2,....N—1) (5)
and
S.=S(t,) (n=0,1,2,....N-1) (6)

where i = v/—1 is the imaginary unit, and t, = nAt. The time incre-
ment is defined by At =T/N, where T is the time window (or sam-
pling time) and N is the total number of spectral components up
to the Nyquist frequency to be considered in the FFT-based spectral
analysis [32]. If the moving speed of the point force is constant, Eq.
(6) can be written as S, = S(t,) = vt,. If the moving speed is time-
varying, Eq. (6) can be replaced with S, = S(t,) = (1/2)at? + vt,,
where a is the acceleration [27].

Fig. 2 shows the frequency-domain presentation of a moving
point force as a series of quasi-static or stationary point forces
defined by Eq. (4) and acting on the multi-span beam. The time
window T is selected to be equal to T4, where T4 denotes the trav-
eling time of the point force from the left end (X =0) to the right
end (X=1L) of the beam. The case T=T, can be readily extended
to case T # T4 by referring to Song et al. [27]. The position of the
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Fig. 1. Multi-span beam subjected to a moving point force P.
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