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a b s t r a c t 

Boundary methods and boundary node treatments for a multispeed lattice are presented in detail for in- 

compressible isothermal flows, which remain a challenging application of the lattice Boltzmann method. 

We developed a completely generic way of handling boundaries with known velocity for multispeed lat- 

tices by extending and improving the on-site boundary conditions proposed by Hecht et al. [1], which 

was only intended for single speed lattice. In addition, we studied two ways of treating the unknown 

distribution functions that span several layers of nodes, namely, the external treatment (the inner layer 

is the boundary) and the internal treatment (the outermost layer is the boundary). The external treatment 

requires the use of ghost nodes at the boundary, whereas the internal treatment relies on an interpolation 

technique. The external treatment is found to offer more stability than the internal treatment when an 

open boundary condition is involved. The improved on-site boundary method for multispeed lattices is 

shown to be local, second-order accurate. Numerical validation is demonstrated with classical benchmark 

problems, namely, lid-driven square cavity, channel, and back-step flows, at different Reynolds numbers 

and grid resolutions. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

The rapid increase in computational power has attracted con- 

siderable interest in the lattice Boltzmann model with more dis- 

crete velocities (multispeed lattices), where the number of dis- 

crete velocities can be as high as 125 in three dimensions [2] . This 

enables correct recovery of the Fourier–Navier–Stokes equations 

in the hydrodynamic limit for thermal flows [3] and the study 

of flows beyond the Navier–Stokes hydrodynamics [4] . However, 

the complexity of modeling the boundary conditions accurately for 

multispeed lattices has limited its widespread use because the dis- 

tribution functions occupying not only the boundary itself but also 

nodes adjacent to the boundary are unknown. Therefore, it is cru- 

cial to determine the appropriate equations and treatments when 

computing the unknown distribution functions, which span several 

layers of the computational domain for a given boundary condi- 

tion. In the literature, only two boundary treatment methodolo- 

gies have been proposed for multispeed lattices: the kinetic-diffuse 

boundary condition [5] and the general regularized boundary con- 

dition (GRBC) [6] . The former is more suitable for microflow appli- 
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cations, whereas the latter is applicable for most flow types on any 

lattice topology. However, the GRBC requires a significant number 

of computations, as it requires an overdetermined matrix to be 

solved at each boundary node. Hence, a simple boundary method 

for multispeed lattices is of particular interest. 

In this paper, we propose a simple yet powerful boundary 

method for 2D multispeed lattices that can be easily extended to 

3D multispeed lattices. The proposed boundary method is based 

on the work of Hecht et al. [1] , where the on-site velocity bound- 

ary method was applied to a D3Q19 lattice. Although the bound- 

ary method in Ref. [1] . was implemented for D3Q19, the resulting 

formula cannot be employed directly for multispeed lattices be- 

cause the distribution functions adjacent to the boundary nodes 

are missing. Thus, the on-site velocity boundary method is ex- 

tended and further improved for multispeed lattices in this work 

to yield a more stable boundary method. 

For multispeed lattices, it is necessary to distinguish which lay- 

ers of nodes belong to the boundary and which belong to the fluid. 

This is because the unknown distribution functions span several 

layers of nodes instead of occurring just at the boundary itself for 

standard lattices (D2Q9 or D3Q19). Two approaches are currently 

used to treat multilayer lattices, namely, the external treatment, 

where layers of nodes are grouped to represent identical bound- 

ary conditions, or the internal treatment, where the outer layer of 

https://doi.org/10.1016/j.compfluid.2017.12.011 

0045-7930/© 2017 Published by Elsevier Ltd. 

https://doi.org/10.1016/j.compfluid.2017.12.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2017.12.011&domain=pdf
mailto:hsulee@ucalgary.ca
https://doi.org/10.1016/j.compfluid.2017.12.011


H.C. Lee et al. / Computers and Fluids 162 (2018) 152–159 153 

Fig. 1. Illustration of the computational domain used in the first two bench- 

mark cases. The D2Q17 lattice and its corresponding microscopic veloc- 

ity set ( c i ) employed in this study are shown inside the computational 

domain. The weights ( w i ) are: w 0 = (575 + 193 
√ 

193 ) / 8100 , w 1 −4 = (3355 −
91 

√ 

193 ) / 180 0 0 , w 5 −8 = (655 + 17 
√ 

193 ) / 270 0 0 , w 9 −12 = (685 − 49 
√ 

193 ) / 540 0 0 , 

and w 13 −16 = (1445 − 101 
√ 

193 ) / 1620 0 0 . 

nodes represents the boundary condition and the inner layers be- 

long to the fluid domain. However, there are currently no insightful 

discussions into which treatment is suitable or more favorable for 

multispeed lattices. Therefore, we will also discuss in detail how 

to treat multispeed boundaries externally and internally, as well as 

the advantages and disadvantages of each type of treatment. 

The article is organized as follows. In Section 2 , the lattice 

Boltzmann method (LBM) is briefly described, and Section 3 ex- 

plains the two types of boundary treatment for multispeed lattices. 

Section 4 provides a detailed explanation and derivation of the ex- 

tension and improvement of the existing on-site velocity bound- 

ary for multispeed lattices. Numerical validations of the proposed 

boundary method and treatments are presented in Section 5 , and 

conclusions are drawn in Section 6 . 

2. High-order lattice Boltzmann model 

The LBM scheme adopted in this study is the widely 

used single-relaxation-time lattice Bhatnagar–Gross–Krook (LBGK) 

model: 

f i (x + c i , t + 1) − f i (x, t) = ω( f eq 
i 

( x, t ) − f i ( x, t )) (1) 

where f i is the discrete probability distribution function for find- 

ing a particle with velocity c i at position x and time t. ω 

(
2 c 2 s 

2 ν+ c 2 s 

)
is the relaxation parameter, f 

eq 
i 

is the discrete Maxwell–Boltzmann 

distribution, and c s is the speed of sound. Multiscale Chapman–

Enskog expansion will yield the Navier–Stokes equations with a 

kinematic viscosity of ν = c 2 s (1 /ω − 1 / 2) ; readers are directed to 

[7,8] for more details regarding the derivations. In this paper, we 

employed D2Q17, where the weights w and speed of sound c s can 

be found in [5] , and the vectors representing the microscopic ve- 

locity set c i are shown in Fig. 1 . D2Q17 was chosen mainly because 

the weights and velocity are optimally derived from the Hermite 

polynomial [4] . Note that the boundary treatments described in 

this paper can be easily extended to D2Q25 or D3Q125. The equi- 

librium distribution up to third order for isothermal flows is used 

in this study; it is given by 

f eq 
i 

= w i ρ

{
1 + 

c i,αv α
c 2 s 

+ 

1 

2 

[
( c i,αv α) 

2 

c 4 s 

− v αv α
c 2 s 

]

+ 

c i,αv α
6 c 2 s 

[
( c i,αv α) 

2 

c 4 s 

− 3 

v αv α
c 2 s 

]}
(2) 

where ρ is the density, and v α is the macroscopic velocity compo- 

nent. The LBM algorithm used in this study is summarized in four 

main steps: 

• Collision step: Populations are relaxed by the rule 

f i ( x, t + 1 ) = f i (x, t) + ω 

(
f eq 
i 

(x, t) − f i ( x, t ) 
)

• Streaming step: Populations are displaced in the direction cor- 

responding to c i : 

f i ( x, t + 1 ) → f i ( x + c i , t + 1) ) 

• Boundary conditions: The missing distribution functions are re- 

placed according to the treatment of the extra layers. 

• The macroscopic values ( ρ , v x , and v y ) are computed using 

Eqs. (4) –( 6 ), which are shown in Section 4 . 

The LBM-LBGK scheme is described in detail in [9,10] . 

3. Boundary node treatments 

A unique feature of multispeed lattices is that the unknown 

distribution functions span several layer of nodes, as depicted in 

Fig. 2 . Hence, it is crucial to distinguish which nodes belong to 

the boundary and which nodes belong to the fluid to ensure that 

the intended physics is solved. There are two ways to differentiate 

between the boundary and fluid nodes, namely, the external and 

internal treatments. In the external treatment, nodes across sev- 

eral layers are grouped together as Group I, II, or III (see Fig. 2 (a)). 

The nodes in each group are subjected to identical macroscopic 

values, boundary conditions, and unknown distribution functions. 

The grouped nodes share an unknown distribution similar to that 

of the nodes with the most unknowns, i.e., l x = 0 for group II. For 

corner nodes (Group III), the unknown distribution functions for 

nodes located at ( l x = 1 , l y = 1 ) and ( l x = 2 , l y = 2 ) will be identi- 

cal to those of the node located at ( l x = 0 , l y = 0 ), which contains 

the most unknown distribution functions. Therefore, the external 

treatment requires additional layers of nodes for each boundary 

condition, and the fluid nodes consist of known distribution func- 

tions. 

The internal treatment, on the other hand, shares the same 

methodology as those standard lattice models in which the bound- 

ary condition is applied only at the nodes located in the first layer 

of the computational domain, as shown in Fig. 2 (b). However, the 

macroscopic values for the fluid nodes located along the second 

and third layers adjacent to the boundary cannot be obtained using 

Eqs. (4) –( 6 ) for multispeed models because several of the distribu- 

tion functions remain unknown even after the streaming process. 

Therefore, we need to interpolate the macroscopic values from the 

boundary and also from the nodes located in the fourth layers 

( l x = 3 ) to reconstruct the unknown distribution functions for the 

fluid nodes located in the second and third layers. For example, 

the velocity components for the fluid nodes located along l x = 1 

and l x = 2 , as shown in Fig. 2 (b), are interpolated through the fol- 

lowing relation: 

W l x = W l x =0 + l x (W l x =3 − W l x =0 ) / 3 (3) 

where W represents the macroscopic x and y velocity components. 

For the fluid nodes adjacent to the corner node (labeled as group 

IV in Fig. 2 (b)), the interpolation involves the use of four nodes 
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