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a b s t r a c t 

An unsteady three-dimensional boundary element method is developed to provide fast calculations of bi- 

ological and bio-inspired self-propelled locomotion. The approach uniquely combines an unsteady three- 

dimensional boundary element method, a boundary layer solver and self-propelled equations of motion. 

This novel implementation allows for the self-propelled speed, power, efficiency and economy to be ac- 

curately calculated. A Dirichlet formulation is used with a combination of constant strength source and 

doublet elements to represent a deforming body with a nonlinearly deforming wake. The wake elements 

are desingularized to numerically stabilize the evolution of the wake vorticity. Weak coupling is used 

in solving the equations of motion and in the boundary layer solution. The boundary layer solver mod- 

els both laminar and turbulent behavior along the deforming body to estimate the total skin friction 

drag acting on the body. The results from the method are validated with analytical solutions, compu- 

tations and experiments. Finally, a bio-inspired self-propelled undulatory fin is modeled. The computed 

self-propelled speeds and wake structures agree well with previous experiments. The computations go 

beyond the experiments to gain further insight into the propulsive efficiency for self-propelled undulat- 

ing fins. It is found that the undulating fin produces a time-averaged momentum jet at 76% of the span 

that accelerates fluid in the streamwise direction and in turn generates thrust. Additionally, it is discov- 

ered that high amplitude motions suppress the formation of a bifurcating momentum jet and instead 

form a single core jet. Consequently, this maximizes the amount of streamwise momentum compared to 

the amount of wasted lateral momentum and leads to a propulsive efficiency of 78% during self-propelled 

locomotion. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Boundary element methods (BEMs) are a class of numeri- 

cal methods used to solve boundary value problems throughout 

physics from electromagnetics [22] and fracture mechanics [36] to 

fluid flows at both low [37] and high Reynolds numbers [3] . In 

high Reynolds number flows they are classically described as panel 

methods and have been well established in the study of aero- 

dynamics over several decades [20,24,29] . High Reynolds number 

BEMs assume that a fluid flow is incompressible, irrotational (ex- 

cept at singular elements) and inviscid, that is, a potential flow. 

This leads to simplified forms of the continuity and momentum 

equations that govern the fluid flow. Yet, unsteady BEM solutions 

are still rich with flow physics [39] and give accurate solutions at 

computational times that are several orders of magnitude faster 

than Navier–Stokes solvers [35,53] . 
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Unsteady three-dimensional BEM computations have been used 

by many researchers to explore both biological and bio-inspired 

propulsion. The flight performance of birds [47] and the swim- 

ming performance of fin whales [27] and fish [9] have been exam- 

ined to reveal features of high efficiency locomotion. For example, 

Zhu et al. [58] found that constructive or destructive interactions 

can occur between the shed vorticity from finlet structures and 

the caudal fin of tuna and giant danio. This can lead to enhanced 

thrust production or efficiency, respectively, with maximum effi- 

ciencies of 75% being calculated. More recently, Zhu [56] showed 

that spanwise and chordwise flexibility can enhance both thrust 

production and efficiency of a flapping wing. The benefit of flexibil- 

ity was also found to be highly dependent upon the mass ratio be- 

tween the wing and the surrounding fluid environment. Addition- 

ally, Zhu and Shoele [57] , Shoele and Zhu [45,46] determined that 

the flexibility of ray-finned fish caudal and pectoral fins also im- 

proved their efficiency performance and reduced the time-varying 

lateral forces acting on the fish. Importantly, none of these previ- 

ous studies have examined the locomotion of self-propelled swim- 

https://doi.org/10.1016/j.compfluid.2018.03.045 

0045-7930/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.compfluid.2018.03.045
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.03.045&domain=pdf
mailto:kmoored@lehigh.edu
mailto:kwm213@lehigh.edu
https://doi.org/10.1016/j.compfluid.2018.03.045


K.W. Moored / Computers and Fluids 167 (2018) 324–340 325 

Fig. 1. The inertial reference frame fixed to the undisturbed fluid is denoted by ( X, Y, Z ) while the body-fixed reference frame is denoted by ( x, y, z ). The local normal, 

streamwise and cross-stream unit vectors are denoted by ˆ n , ̂  s , and ̂  c , respectively. The body surface, S b , is layered with distributions of doublet elements of strength μ and 

source elements of strength σ . The wake surface, S w , is layered with distributions of doublet elements of strength μw . 

mers nor the free-flight of flyers, yet these conditions are a critical 

feature of bio-inspired locomotion. 

One complicating factor is that an inviscid BEM does not inher- 

ently calculate viscous drag. This gives no opposing force to bal- 

ance the thrust production, which leaves out a necessary ingre- 

dient for calculating a steady-state self-propelled speed. However, 

viscous drag has been estimated in several other BEM studies by 

using a boundary layer momentum-integral approach on stream- 

wise strips [28,41,50] . Even with a viscous drag estimate included 

these studies focused on fixed freestream velocity conditions. 

This work describes a novel implementation for computing the 

self-propelled performance of biological and bio-inspired propul- 

sors within a BEM framework. There are three main components 

that must be combined to model self-propelled swimming: (1) a 

three-dimensional BEM fluid solver, (2) a boundary layer solver, 

and (3) an equations of motion solver. These components to the 

method are described in Section 2 . Validation with several an- 

alytical, numerical and experimental solutions are presented in 

Section 3 . Finally, comparison of the BEM solution with a three- 

dimensional self-propelled undulating fin experiment is presented 

in Section 4 . The free-swimming performance and wake structures 

are shown to agree well with the experiments. Additionally, the 

self-propelled performance of cases that extend beyond the pre- 

vious experiments are examined to provide novel physical insight 

into the self-propulsion of three-dimensional ray-inspired fins. 

2. Computational methods 

2.1. Governing equations and boundary conditions 

To model a high Reynolds number fluid flow around a 

self-propelled bio-inspired device or animal an unsteady three- 

dimensional boundary element method is employed. The flow field 

is modeled as an incompressible, irrotational and inviscid flow, 

that is, a potential flow. For the self-propelled problem we define 

the problem in an inertial frame of reference that is attached to 

the undisturbed fluid (denoted by ( X, Y, Z ) in Fig. 1 ). As such the 

velocity field, u , may be defined everywhere as the gradient of a 

scalar velocity potential, 

u = ∇ �∗, (1) 

where �∗ is defined in the inertial frame of reference and it is 

known as the perturbation potential. The pressure field, P , within 

this fluid can be calculated from the unsteady Bernoulli equation, 

P (X, Y, Z, t) = −ρ
∂�∗

∂t 

∣∣∣
inertial 

− ρ

(∇ �∗)2 

2 

, (2) 

which is formulated in the inertial frame where the reference pres- 

sure P ∞ 

= 0 and the perturbation potential at infinity is zero. Also, 

ρ is the fluid density. The time derivative of the perturbation po- 

tential for a point on the surface of the body is then calculated by 

using a body-fixed Lagrangian frame (denoted by ( x , y , z ) in Fig. 1 ) 

[9,35,54] , that is, 

P (x, y, z, t) = −ρ
∂�∗

∂t 

∣∣∣
body 

+ ρ( u rel + U 0 ) · ∇ �∗ − ρ

(∇ �∗)2 

2 

. 

(3) 

The translational velocity of a body-fixed frame of reference is U 0 

while the relative velocity of a point on the surface of the body 

to the body-fixed reference frame is u rel . Once the perturbation 

potential is known, then the pressure on the body surface may be 

found and the forces can be calculated by integrating the pressure 

and shear stress, τ , acting on the body. 

F ( x, y, z, t ) = 

∫ 
S b 

(
−P ˆ n + τ ˆ s 

)
dS (4) 

The body surface is denoted as S b , the outward normal vec- 

tor from the body surface is ˆ n and the tangential vector along the 

body surface in the streamwise direction is ˆ s . This inviscid formu- 

lation is coupled to a viscous boundary layer solver described in 

Section 2.9 , which estimates the shear stress acting on the body 

in the streamwise direction produced by the outer potential flow. 

Note that the shear stress acting in the cross-stream direction 

is not accounted for in the viscous boundary layer solver and is 

therefore not present in Eq. (4) . The problem is then reduced to 

solving for the perturbation potential throughout the fluid, which 

is governed by Laplace’s equation, 

∇ 

2 �∗ = 0 . (5) 

The boundary conditions that must be satisfied for an invis- 

cid fluid are that there is no fluid flux through the body surface 

and that the flow disturbances caused by the body must decay far 

away, 

n · ∇ �∗ = n · ( u rel + U 0 ) on S b (6) 

∇ �∗
∣∣∣
| x |→∞ 

= 0 on S ∞ 

(7) 

where S ∞ 

is the surface at infinity bounding the fluid and x = 

[ x, y, z ] 
T is measured from the body-fixed frame of reference. 

2.2. Boundary integral equation 

A general solution to Laplace’s equation for the potential any- 

where within the fluid domain, V, can be determined. This is done 
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