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a b s t r a c t 

A novel stabilized formulation for 3D compressible viscous flows on moving domains is developed. New 

weak imposition of essential boundary conditions and sliding-interface formulations are also proposed 

in the context of moving-domain compressible flows. The new formulation is successfully tested on a 

set of examples spanning a wide range of Reynolds and Mach numbers showing its superior robustness. 

Experimental validation of the new formulation is also carried out with good success. In addition, the 

formulation is applied to simulate flow inside a gas turbine stage, illustrating its potential to support 

design of real engineering systems through high-fidelity aerodynamic analysis. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

The success of finite element methods in solid and structural 

mechanics, heat conduction, and other areas in 1970s encour- 

aged its development and use to simulate flow problems. Stabi- 

lized finite element methods for fluid mechanics were introduced, 

and the first of them was the streamline upwind/Petrov–Galerkin 

(SUPG) method [1] for incompressible flows. The key idea of SUPG 

was to add a residual-based stabilization term to the Galerkin form 

of the governing equations in order to enhance the stability for 

higher Reynolds number flows while retaining consistency of the 

formulation. SUPG was extended to compressible flows using con- 

servation variables in [2–4] . The concept of SUPG was further re- 

fined and studied for entropy variables in [5–7] , and then gen- 

eralized to arbitrary variable sets in [8,9] . Over the years, signif- 

icant progress was made in stabilized methods for compressible 

flows. The one perhaps most relevant to this paper was combin- 

ing a new version [10,11] of the compressible-flow SUPG method 

[2–4] with the Deforming-Spatial-Domain/Stabilized Space–Time 

(DSD/SST) method [12–14] . The DSD/SST method (now also called 

the “ST method”) was introduced for flow problems with moving 
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boundaries/interfaces, including fluid–structure interaction (FSI). 

The method resulting from this straightforward mixture of the 

DSD/SST concept and the compressible-flow SUPG method, which 

is now called compressible-flow ST SUPG method, was first tested 

in [15] . This was followed by computations for air intake of a jet 

engine with adjustable spool at supersonic speeds [16] , aerody- 

namics of two high-speed trains in a tunnel [14] , liquid propel- 

lant guns [17,18] , and compressible-flow FSI [19,20] . Other progress 

included large-scale parallel computations [16,21–24] , unified for- 

mulations of incompressible and compressible flows [8,25] , and the 

development of stabilization parameters [10,11,26–32] . 

It was observed early on that when stabilized methods were 

applied to compressible flow analysis, oscillations occurred in 

the vicinity of shocks and other sharp solution features. Hughes 

et al. [33,34] proposed a class of shock- or discontinuity-capturing 

methods that provide additional dissipation by adding mesh- and 

solution-dependent artificial viscosity terms to a stabilized formu- 

lation. These viscosities are often residual-based, and thus pre- 

serve consistency of the formulation. These shock-capturing meth- 

ods were in the context of entropy variables. In a 1991 ASME pa- 

per [10] , the original compressible-flow SUPG method, now called 

“(SUPG) 82 ”, was supplemented with a very similar shock-capturing 

term, which included a shock-capturing parameter that is now 

called “δ91 ”. The shock-capturing parameter was derived from the 
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one given in [7] for the entropy variables. It was shown in that, 

with the added shock-capturing term, (SUPG) 82 was very compa- 

rable in accuracy to (SUPG) 82 recast in entropy variables. In the 

2D inviscid-flow test computations reported in [11] soon after that, 

(SUPG) 82 and (SUPG) 82 recast in entropy variables yielded indistin- 

guishable results. Following these works, references [9,35] general- 

ized discontinuity-capturing methods to arbitrary solution-variable 

sets. Further developments include the discontinuity-capturing di- 

rectional dissipation (DCDD) stabilization for incompressible flows 

[28,36] and the YZ β shock capturing [28–32,37–41] , which is 

based on a scaled residual and has a parameter ( β) that con- 

trols the degree of shock smoothness. Numerical experiments 

in [30–32] demonstrated that these new discontinuity captur- 

ing techniques are relatively simple to implement and give re- 

sults of comparable or even improved accuracy relative to ear- 

lier approaches. A concise summary of stabilized methods and 

discontinuity-capturing techniques for compressible flows may be 

found in a recent review article [42] and references therein. 

In this paper, we make use of SUPG stabilization and disconti- 

nuity capturing to develop a novel numerical formulation for the 

Navier–Stokes equations of compressible flows in the Arbitrary 

Lagrangian–Eulerian (ALE) frame [43] suitable for moving-domain 

simulations. Early developments in stabilized ALE-based finite- 

element methods for compressible flows may be found in [44–46] . 

In the present effort, we introduce several improvements to 

the existing formulations, as well develop new techniques, such 

as weakly enforced essential boundary conditions and sliding- 

interface formulations, that enlarge the scope and applicability of 

moving-domain, finite-element-based compressible flow formula- 

tions. 

Weakly enforced no-slip boundary conditions [47] are imposed 

on solid surfaces in order to avoid excessive resolution of thin, 

and often turbulent, boundary layers. Weak imposition of essen- 

tial boundary conditions in the sense of Nitsche’s method [48] for 

incompressible flows was first introduced in [47] , and further re- 

fined in [49,50] . The most distinguishing feature of this method 

is the added flexibility to allow the flow to slip on the solid sur- 

face in the case when the wall-normal mesh size is relatively large 

[50–52] . This feature allows one to achieve good accuracy on rel- 

atively coarse boundary-layer meshes. Weakly enforced boundary 

conditions have been successfully applied to simulations of wall- 

bounded turbulent flows [49,50] and wind turbines [52–55] . More 

recently, weak enforcement of no-slip conditions was developed 

and applied in the context of immersogeometric analysis [56–59] , 

which led to solutions of higher-order accuracy on non-boundary- 

fitted meshes. In the present work, we propose an extension of 

weakly enforced essential boundary conditions in the context of 

compressible flows, which brings the aforementioned advantages 

to this important area of computational fluid mechanics. 

The sliding-interface formulation for incompressible flows was 

introduced in [60] for simulating flows with objects in relative 

motion. The formulation was comprehensively studied and refined 

in [54,55] , mostly with application to wind turbines. The sliding- 

interface formulation may be interpreted as a Discontinuous 

Galerkin method [61] , where the basis functions are continuous in- 

side the interior of subdomains but not at the sliding interface. In 

the incompressible-flow regime, the sliding-interface formulation 

was recently extended to the space–time (ST) variational multi- 

scale (VMS) method [62–69] , and the extension is called the “ST 

Slip Interface (ST-SI)” method [70–76] . In this work, we develop a 

compressible-flow counterpart of the sliding-interface formulation. 

This paper is organized as follows. In Section 2 , we develop a 

complete numerical formulation of the Navier–Stokes equations of 

compressible flows. In Section 3 , we compute several 2D and 3D 

examples to verify and validate the different constituents of our 

compressible-flow numerical methodology. We focus on a broad 

range of Reynolds and Mach numbers to illustrate the robustness 

of the numerical formulation. In Section 4 , we apply the methods 

developed to simulate flow inside a gas turbine stage, illustrating 

the potential of our methods to support design for real engineering 

systems through high-fidelity aerodynamic analysis. In Section 5 , 

we draw conclusions. 

2. Numerical methodology 

2.1. Governing equations of compressible flows 

2.1.1. Preliminaries 

The Navier–Stokes equations of compressible flows are often ex- 

pressed using a vector of conservation variables ˜ U defined as 

˜ U = 

⎡ 

⎢ ⎢ ⎣ 

ρ
ρu 1 

ρu 2 

ρu 3 

ρe tot 

⎤ 

⎥ ⎥ ⎦ 

, (1) 

where ρ is the density, u i is the i th velocity component, i = 1 , ..., d, 

where d = 2 or 3 is the space dimension, and e tot = e + ‖ u ‖ 2 / 2 is 

the fluid total energy density, where e is the fluid internal energy 

density and ‖ u ‖ is the velocity magnitude. 

We also introduce a vector of primitive variables based on pres- 

sure or the pressure-primitive variables Y defined as 

Y = 

⎡ 

⎢ ⎢ ⎣ 

p 
u 1 

u 2 

u 3 

T 

⎤ 

⎥ ⎥ ⎦ 

, (2) 

where p is the pressure and T is the temperature. Pressure, density, 

and temperature are related through an equation of state. Here we 

make use of the ideal gas equation of state, which may be written 

as 

p = ρRT , (3) 

where R is the ideal gas constant. Furthermore, we assume a calor- 

ically perfect gas and define the fluid internal energy density as 

e = c v T , (4) 

where c v = R/ (γ − 1) is the specific heat at constant volume and 

γ is the heat capacity ratio. 

Throughout the paper we use ( ·) , t to denote a partial time 

derivative holding the spatial coordinates x fixed, and we use ( ·) , i 
to denote the spatial gradient. 

2.1.2. Strong form 

The Navier–Stokes equations of compressible flows, which ex- 

press pointwise balance of mass, linear momentum, and energy, 

may be written in terms of ˜ U as 

˜ U ,t + ̃

 F adv 
i,i = 

˜ F diff
i,i + ̃

 S , (5) 

where ˜ F adv 
i 

and 

˜ F diff
i 

are the vectors of advective and diffusive 

fluxes, respectively, and 

˜ S is the source term. The residual of the 

compressible-flow equations may be defined as 

˜ Res = 

˜ U ,t + ̃

 F adv 
i,i − ˜ F diff

i,i − ˜ S . (6) 

We further split the advective flux into ˜ F adv 
i 

= 

˜ F 
adv \ p 
i 

+ ̃

 F 
p 
i 

. The 

aforementioned fluxes are defined as 

˜ F 
adv \ p 
i 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

ρu i 

ρu i u 1 

ρu i u 2 

ρu i u 3 

ρu i 

(
e + ‖ u ‖ 

2 / 2 

)

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (7) 
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