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A B S T R A C T

Ecological indicators are often collected to detect and monitor environmental change. Statistical models are used
to estimate natural variability, pre-existing trends, and environmental predictors of baseline indicator condi-
tions. Establishing standard models for baseline characterization is critical to the effective design and im-
plementation of environmental monitoring programs. An anthropogenic activity that requires monitoring is the
development of Marine Renewable Energy sites. Currently, there are no standards for the analysis of environ-
mental monitoring data for these development sites. Marine Renewable Energy monitoring data are used as a
case study to develop and apply a model evaluation to establish best practices for characterizing baseline eco-
logical indicator data. We examined a range of models, including six generalized regression models, four time
series models, and three nonparametric models. Because monitoring data are not always normally distributed,
we evaluated model ability to characterize normal and non-normal data using hydroacoustic metrics that serve
as proxies for ecological indicator data. The nonparametric support vector regression and random forest models,
and parametric state-space time series models generally were the most accurate in interpolating the normal
metric data. Support vector regression and state-space models best interpolated the non-normally distributed
data. If parametric results are preferred, then state-space models are the most robust for baseline character-
ization. Evaluation of a wide range of models provides a comprehensive characterization of the case study data,
and highlights advantages of models rarely used in Marine Renewable Energy environmental monitoring. Our
model findings are relevant for any ecological indicator data with similar properties, and the evaluation ap-
proach is applicable to any monitoring program.

1. Introduction

Statistical models are commonly fit to ecological indicator data to
detect and measure change in environmental monitoring programs, but
observed patterns are potentially affected by the choice of model used
to analyze data (e.g., Jones-Farrand et al., 2011; Olden and Jackson,
2002; Thomas, 1996). Ecological indicators characterize ecosystem
attributes such as structure, composition, and function (Niemi and
McDonald, 2004; Noss, 1990) that vary over time or location. An in-
dicator can be measured directly or derived from metrics to serve as
proxies for indicators (e.g., counts, concentrations, rates). Statistical
models can then be applied to indicator or metric data to characterize
baseline conditions, which includes estimation of pre-disturbance
variability, data trends, and relationships between biotic and abiotic
components of the environment (Treweek, 1996, 2009). Quantifying
baseline conditions enables the design of operational monitoring pro-
grams that measure change caused by known disturbances (Schmitt and

Osenberg, 1996; Treweek, 2009). By standardizing indicators and
models used to analyze ecological baseline data, uncertainty in as-
sessment of environmental change is reduced and sites can be compared
across time and locations.

In terrestrial and aquatic ecosystems, ecological indicators are used
to quantify ecosystem change in response to disturbances. Examples
include climate change (Ainsworth et al., 2011), resource harvest (e.g.
commercial fisheries; Large et al., 2013), and human activity− ranging
from population growth to acoustic disturbances (Andrews et al.,
2015). For monitoring programs, indicators need to be evaluated with
models to develop standards for quantifying anthropogenic effects on
the environment. Anthropogenic disturbances to ecosystems result from
the addition or cessation of human activity with positive or negative
effects. One example of an anthropogenic activity that may impact
aquatic ecosystems is marine renewable energy (MRE; see Table A1 for
the list of defined abbreviations) technologies, including offshore wind
turbines, surface wave energy convertors, and tidal stream turbines.
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With the exception of offshore wind operations, current MRE devel-
opment is largely demonstration scale (e.g., 1–2 devices installed for
testing and validation), rather than commercial enterprises that are grid
connected. In the United States, the lack of commercial scale MRE
projects is partially attributed to the uncertainty associated with en-
vironmental effects of MRE development. At this time, there are no
standard monitoring requirements for baseline or operational mon-
itoring of MRE sites within the United States and other nations
(Copping et al., 2016).

In an effort to ensure efficient, comparable, and informative mon-
itoring programs, initial guidelines have been developed for MRE
monitoring study design and data collection. These guidelines empha-
size the use of ecological indicators to assess change caused by MRE
development (Boehlert et al., 2013; Klure et al., 2012). Indicators re-
commended for measuring change include abundance, distribution,
diversity, and behavior (Niemi and McDonald, 2004; Noss, 1990) of
ecosystem components that may be affected by development, including
marine mammals, birds, fish, and habitat (Boehlert et al., 2013; Klure
et al., 2012; McCann, 2012). Common methods to collect metrics that
serve as proxies for indicators, such as abundance counts, diversity
indexes, location measurements, include trawl, acoustic, and optical
surveys (Klure et al., 2012; McCann, 2012; Polagye et al., 2014). De-
spite recommendations of indicator use, current guidelines lack best
practices for analyzing indicator or metric data. Previous efforts to
analyze MRE monitoring data have been narrow in scope, usually re-
stricted to generalized regression models. We define generalized re-
gression models to include linear regressions (e.g., Hammar et al., 2013;
ORPC, 2014), semi- or parametric generalized linear (mixed) models
(GLMMs) (e.g., Bergström et al., 2013; Embling et al., 2013; Stenberg
et al., 2015), and generalized additive (mixed) models (GAMMs) (e.g.,
Benjamins et al., 2016; Mackenzie et al., 2013). These models have
been used to characterize baseline conditions and to predict effects of
MRE development on those conditions (e.g., Duck et al., 2006; Tollit
and Redden, 2013; Viehman et al., 2015). The use of semi- and full
parametric models for monitoring is constrained due to the limited
range of error distribution assumptions, and a required parametric re-
lationship between predictors and response variable.

An evaluation of a wider range of model classes is needed to es-
tablish best practices when analyzing environmental data to establish
baselines for ecological indicators. Time-series and nonparametric
models differ from generalized regression models, and yet are equally
capable of fitting indicator data, predicting environmental effects, and
measuring change. Evaluating the ability of generalized, time series,
and nonparametric regression models to characterize ecological time
series data is necessary to recommend best practices. We use data from
a proposed MRE site as a case study for model evaluation, but because
this framework is general, the models and methods presented here are
applicable to a wide range of monitoring programs and indicators.
Establishing best practices for characterizing baseline conditions de-
creases site characterization and operational monitoring costs, enables
comparison among sites, and reduces uncertainty in environmental
assessments.

2. Methods

2.1. MRE baseline case study

The case study baseline data was collected at a tidal turbine pilot
project site proposed by the Snohomish County Public Utility District
No. 1 from May 11 to June 8, 2011 (Horne et al., 2013). The site is
located ∼1 kilometer off Admiralty Head, Puget Sound Washington
(48.18° N, −122.73° W), at a depth of ∼60 m (Public Utility District
No. 1 of Snohomish County, 2012). The project would deploy two, 6 m
Open Hydro turbines (http://www.openhydro.com/). Active acoustic
backscatter data recorded using a 120 kHz BioSonics DTX echosounder
mounted on a Sea Spider platform is assumed representative of a

primary monitoring method that would be deployed throughout the life
of an MRE project. Acoustic backscatter is representative of nekton (i.e.,
macro-invertebrates and fish that move independently of fluid motion)
density within the water column (Maclennan et al., 2002). The echo-
sounder sampled at 5 Hz for 12 min every 2 h, and a −75 dB re 1m−1

threshold was applied to the data to remove noise (Horne et al., 2013).
Data values were constrained to 25 m from the bottom, a height cor-
responding to twice that of the proposed OpenHydro tidal turbine.

A suite of metrics derived from the acoustic backscatter data are
available to quantify nekton density and vertical distribution in the
water column (cf. Burgos and Horne, 2007; Urmy et al., 2012). Two
metrics were chosen to represent MRE monitoring data: mean volume
backscattering strength (Sv) (dB re 1 m−1) and an aggregation index
(AI) (m−1). Both metrics are continuous, display periodic autocorrela-
tion (Jacques, 2014), and are trend-stationary (i.e., statistical data
properties are constant over time, assuming that the periodicity and
trend in the data are associated with deterministic environmental
variables). These two metrics serve as proxies of abundance and be-
havior, which are indicators of nekton structure and function (cf.,
Niemi and McDonald, 2004; Noss, 1990; Wiesebron et al., 2016). Sv
data serves as a proxy for nekton density and are normally distributed.
The AI data measures animal patchiness, are non-normal, right-skewed,
and composed primarily of low aggregation values with spikes of high
aggregation (Fig. 1). The terms low state and high state will be used to
refer to the two magnitudes of AI values. These metrics are considered
representative of MRE baseline data, because MRE monitoring guide-
lines consider fish a primary receptor (i.e., ecosystem component that
responds to change) of MRE environmental stressors (i.e., external
events or features associated with MRE development) (e.g., Boehlert
et al., 2013; Klure et al., 2012; McCann, 2012).

Ancillary environmental measurements collected during Admiralty
Inlet surveys (cf. Jacques, 2014) were used as potential covariates in
the candidate models. Daily tidal range (m), tidal speed (m/s), and
Julian day of year were matched to each time stamp from May 11th
through June 8, 2011. Tidal range was calculated as integrated tidal
speed through the day (Jacques, 2014). A Fourier series defined by a
24 h period was also included as an environmental variable to represent
time-of-day.

2.2. Evaluation approach

We developed an evaluation to assess the ability of statistical
models to characterize baseline environmental conditions that identify
potential effects of MRE development and to accurately measure effects
during operations. The approach is intended to evaluate data varia-
bility, trends, and relationships between components of the environ-
ment. We used cross-validation as a model selection tool to quantify
interpolation accuracy (i.e., ability to predict data within the range of
the empirical data) (Hastie et al., 2009). This approach ensured an
equal assessment of model accuracy across all statistical model classes
(parametric v. non-parametric), while at the same time, parameterized
all candidate models to have the greatest probability of success in ac-
curately characterizing the data. Residual diagnostics were used to as-
sess the validity of model error distribution and autocorrelation struc-
ture assumptions. The 10-fold cross validation model selection and
residual diagnostics provide estimates of model fit accuracy and re-
sidual variability. Patterns in selected covariates among models were
interpreted as trends and important predictor variables of the indicator
data. Results from the evaluation were then used to recommend model
(s) most capable of characterizing normally and non-normally dis-
tributed monitoring data. All analyses were conducted using the R
v.3.1.2 statistical software environment (R Core Development Team,
2014).
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