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Abstract: In this paper, the optimal sensor location problem is first discussed for environmental
monitoring of physical phenomena governed by some advection-diffusion partial-differential
equations. In particular, the exact derivation of the observability Gramian of an advection-
diffusion PDE is investigated. Based on the optimality criteria derived from this analysis, a
conservation law governing the behavior of a crowd of mobile sensors is proposed to ensure
convergence of the sensor density towards an optimal location. The monitoring of pollution on
a 2D domain is the case study used throughout the paper to illustrate the effectiveness of the

proposed approach.
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1. INTRODUCTION

Mobile sensors in networks (such as coordinated fleet of
drones) represent an attractive way to ensure monitoring
or tracking of time-varying spatially-distributed environ-
mental phenomena (weather events, wildfires, air, soil,
river or sea pollution ...). Presently monitoring systems
are still mostly based on static networks of sensors, see
Ghanem (2004) for instance. However the use of mobile
sensors can potentially provide more flexibility in collect-
ing distributed data when the conditions are changing.

The navigation of mobile sensors for environmental mon-
itoring is classicaly based on concentration gradient and
flow direction to track pollutant sources (Cortes (2004)).
In Demetriou (2011); Ucinski (2005), the authors derive
a stable distributed-parameter state observer by using
measurements from some mobile sensors which have to
be controlled to satisfy this goal. Following the same idea,
in Georges (2013), a nonlinear conservation law is pro-
posed to model the collective behavior of a mobile sensor
continuum used for pollution monitoring purpose. The
sensor density reaches an equilibrium corresponding to the
necessary conditions for optimality (observability maxi-
mization or trade-off between observability maximization
and obstacle avoidance in the presence of obstacles).

In the present paper the later approach is improved in
the sense that the proposed conservation law derivation is
now based on the exact infinite-dimensional observability
gramian of an advection-diffusion PDE in 2D, which
can be easily computed, rather than on an approximate
finite-dimensional observability gramian derived from a
finite-dimensional model obtained thanks to a Galerkin
method. The application field still concerns all the physical
phenomena governed by advection-diffusion PDEs. The

here-proposed approach can be closely related to the work
by Privat et al (2015) for the wave equation.

The main objective remains to get an optimal configura-
tion of the sensors suitable to enhance the performance
of state observers designed for estimation or prediction of
the distributed pollution dynamics, by mainly improving
sensor measurement output sensitivity with respect to the
initial state distribution.

The organization of the paper is now as follows: In section
2, the advection-diffusion PDE governing the pollution
dispersion phenomena is recalled. Section 3 is devoted to
both the exact derivation of both the infinite-dimensional
Gramian of a linear advection-diffusion PDE and an ob-
servability criteria used for the optimal location of sensors.
In section 4, a new nonlinear conservation law governing
a crowd of mobile sensors is derived using the results of
section 3. In section 5, a case study is investigated, which
demonstrate the effectiveness of the methodology. Finally
the paper ends with some conclusions and perspectives.

2. THE ADVECTION-DIFFUSION PDE (ADPDE)

The pollution dispersion phenomena may be well modeled
(see Zannetti (1990) for instance), in the case of air
pollution) on a domain Q by the following advection-
diffusion partial differential equation:

0
ai;(a:, t) + V(z,t) - Vu(e, t) = kAu(z, t) — Bu(z, t)
+S(x,t) (1)
where z € Q € RN, with N = 1,2 or 3, u(x,t) is the
concentration of a chemical species (the pollutant), V' (z, t)

is a vector of flow velocities which is supposed to be known
(through measurements or computation of other PDEs,
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such as the Saint-Venant equations governing the dynam-
ics of open-channel hydraulic systems or meteorological
models in the case of air pollution), k& > 0 is a constant
diffusion coefficient which is supposed to be known, 5 > 0
is a reaction coefficient, and source term S(z,t) acts in
the domain €. V and A stand for the gradient and the
Laplacian respectively. ” -7 denotes the standard scalar
product.

In this paper, only the 2D case will be studied. This means
that there is no concentration gradient according to the
vertical coordinate. It should be however pointed out that
the methodology proposed here can be easily extended to
the 3D case.

A rectangular domain Q = {(z,y): 0< a2 <L, 0<y<
H} is introduced, together with the following initial and
boundary conditions !

u(z,y,t =0) = ug(z,y), (2)
and

u(0,y,t) = u(L,y,t) =0, (3)

u(z,0,t) = u(z, H,t) = 0. (4)

Now we use the following assumptions in what follows:

Assumption 1: Velocity field V(x,y,t) is supposed to be
uniform over domain Q: V(z,y,t) = V(t).

Assumption 2: The source term S(z,y, ) is known.

Assumption 3: The time-varying velocity V (t) is replaced
by a mean velocity V' defined over a finite time interval
[0, T7:

T
V= % /O V(t)dt. (5)

This assumption means that the velocity field V(t) is
available through measurements or predictive computation
over [0, 7).

Even if the attention will be paid to 2D air pollution
in the paper, many other applications are covered by
the methodology proposed here: Monitoring of pollution
advection-diffusion in 1D or 2D shallow water systems
(rivers, lakes, estuaries or seas), underseas pollution or
groundwater monitoring.

3. OBSERVABILITY ANALYSIS OF THE ADPDE
3.1 Background on Observability Gramian of Linear PDEs

For linear time-invariant finite-dimensional systems:

T =Ax (6)
y=Czx (7)

where z € R™ and y € RP, the so-called ”transient
observability function” is defined as (see Brockett (1970)
for instance)

1 Neumann Boundary Conditions can also be used without restric-
tion.
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that is the output energy generated by any initial state
X € R" in the time interval [0, T]. L, may be rewritten as

Lo(X,T) =

1
Lo(X,T) = 5XTW(T)X
(9)
with
T T
W(T) = / e toT et (10)
0
W (T) is the so-called ”transient observability Gramian”
matrix.

A necessary and sufficient condition for observability (resp.
detectability) of the pair (C, A) is that there exists V¢ €
[0, T], a positive definite (resp. non negative definite) sym-
metric matrix W (t), solution to the following differential
Lyapunov equation:

—W(t) + ATW () + W(t)A=-CTC,
W(0)=0. (11)

The computation of this Lyapunov equation provides the
observability Gramian at time T'.

In the case of asymptotically stable observable (resp.
detectable) linear systems defined by the pair (C, A), L, is
finite when T' — +oo and limy_, oo W(T') = W, W™ is
obtained as the unique positive definite (resp. non negative
definite) solution to the Lyapunov problem:

ATW + WA =-C"C. (12)
It follows that W (T') or W can be used as a measure of
the observability degree of the system, since the eigenval-
ues of W or W™ represent the sensitivity of output y with
respect to each component of any initial state z(0) = X.
Indeed, if the sensitivity of y to the intial state (denoted
Dayy” (1)) is given by

%(azozT(t)) = A0,z (1), Opyx T (0) =15,  (13)

Doy (1) = COzya™ (1), (14)
where 9,,27 denotes the sensitivity matrix of x with

respect to initial state xg, then the observability Gramian
can be recovered as a Fisher Information Matrix (FIM):

Duoy” (t) = Ce™* (15)
/ ' Oo y(1) Do y™ (t)dt = / AT CeAtdt = W(T).
0 0
(16)

It is interesting to notice that such a sensitivity analysis
can be useful to compute the FIM of the sensitivity of
y to an unknown constant or slowly time-varying input
(source) u for the state-space system:

i(t) = Az(t) + Bu, = € RN, u € R™,
y(t)=Cual(t), y € R”.
Applying the previous sensitivity computation leads to:

x(0) = xg
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