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ARTICLE INFO ABSTRACT

Indoor environmental quality (IEQ) is a critical aspect of the built environment to ensure occupant health,
comfort, well-being and productivity. Existing IEQ monitoring approaches rely on sensor networks deployed at
selected locations to collect environmental measurements, and are limited in scale and adaptability due to
infrastructure cost and maintenance requirement. To enable high-granularity IEQ monitoring with agile adap-
tion to the dynamic indoor environment, we propose an “automated mobile sensing” system that dispatches a
sensor-rich navigation-capable robot to actively survey the indoor space. Data collected in this fashion is sparse
in the joint temporal and spatial domain, and cannot be used directly for IEQ evaluation. To deal with this
special characteristics, we developed a spatio-temporal interpolation algorithm to capture the global trend and
local variation in order to use the data efficiently to reconstruct the IEQ dynamics. We compared the perfor-
mance of the automated mobile sensing with a dense sensor network in a laboratory where we measured the air-
change effectiveness (ASHRAE standard 129) for four different conditions. Results indicate that automated
mobile sensing is able to accurately estimate the parameters with a minimal sensor cost and calibration effort.
Potential applications of this system include indoor thermal comfort, lighting, indoor air quality and acoustic
monitoring, pollutant source identification, and building commissioning. We shared publicly the source codes
for robot control, sensor setup, and interpolation algorithm to encourage comparison study and further devel-
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1. Introduction

Smart buildings are cyber-physical energy systems (CPES) that in-
tegrate sensing, data analytics, and control to provide essential services
to the occupants. Buildings consume about 40% of primary energy in
the U.S. and there is a fundamental drive for buildings to be energy
efficient [1,2]. As people spend about 90% of their time indoors, they
should also be human-centric by focusing on improving human health,
comfort, well-being and productivity, and well-being [3-6]. This could
be achieved effectively by monitoring and enhancing indoor environ-
mental quality (IEQ), such as indoor air quality, thermal comfort,
lighting and acoustics [7-9]. IEQ monitoring has been recognized as
one of the fundamental strategies to obtain credits by various guidelines
and rating systems, such as American Society of Heating, Refrigerating
and Air-Conditioning Engineers (ASHRAE)/Chartered Institution of
Building Services Engineers (CIBSE)/U.S. Green Building Council
(USGBC) Performance Measurement Protocols for commercial buildings
(PMP) [10] and Leadership in Energy and Environmental Design
(LEED) [11]. For instance, environmental parameters (e.g.,
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temperature, humidity) need to be continuously monitored when oc-
cupants take a “right-now” thermal comfort survey, according to
AHSRAE/CIBSE/USGBC PMP [10]. LEED suggests CO, monitoring in
all densely occupied spaces. In addition, IEQ assessment involves con-
taminants sampling in all occupied spaces, such as volatile organic
compound (VOC) and particulate matter (PM) [11]. Guidelines, stan-
dards and rating systems recognize that more IEQ monitoring would be
valuable but affordability constrain limits what is suggested to be used.
Due to complex indoor structures and dynamic environment, IEQ
parameter distributions are often inhomogeneous, resulting in spatial
variations in thermal environment and indoor contaminant exposure
[12-14]. Furthermore, applications of personalized heating/cooling
devices, aiming to reduce building energy use, augment such in-
homogeneity [15-20]. Consequently, spatio-temporal monitoring of
indoor environment can provide an comprehensive IEQ assessment.
Key challenges in the objective IEQ assessment of commercial
buildings involve accurate, easy-to-use, and scalable sensing systems
[21]. An effective approach is to implement wireless sensor networks;
however, despite the continuous reduction in sensor cost and
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Fig. 1. Automated mobile sensing system overview. The robotic
platform can either work alone or with static sensor network to

actively estimate building context and facilitate building control.
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simplification in deployment, infrastructure investment and main-
tenance might still remain a concern in the near future, especially when
considering monitoring numerous IEQ variables simultaneously.
Moreover, many sensors that require a significant amount of power
(e.g., hot wire anemometer) can not easily become wireless. Ad-
ditionally, buildings might undergo several renovations in their life-
cycle, so agility is essential to adapt to the changing environment.

1.1. Main contributions and objectives

Differentiated from existing approaches of deploying static sensors
for indoor monitoring, we propose a sensing paradigm of “automated
mobile sensing” by leveraging a navigation-enabled sensing-capable
mobile robot (see Fig. 1 for the overall architecture). This represents a
paradigm of “active inference”, where the robot can plan its path to
take representative measurement samples at locations of interests, as
compared to “passive inference” where the data collection is limited by
the geolocations of static sensors.

From a data analytic perspective, unlike data from static sensors, the
samples taken by the robot is highly sparse in time and space, as illu-
strated in Fig. 3. While existing interpolation mainly focuses on the
spatial domain [22,23], we propose a data-efficient spatio-temporal
(ST) interpolation method that extracts local and global trends and
constructs an informative visualization of IEQ. Through experimental
evaluations of zone air distribution effectiveness (air-change effective-
ness, ACE), automated mobile sensing is compared with static sensing
with a dense sensor network required by the ASHRAE standard 129
[24]. Note that the air-change effectiveness experiment is only used to
demonstrate our novel platform, rather than to investigate possible
factors that influence its value, for which we refer the readers to more
established works [20,25-27]. It is, therefore, the objective of this
paper to describe the novel “automated mobile sensing” system for
indoor environmental quality monitoring, enabled by a sensor-rich
navigation-capable robot to actively survey the indoor space.

2. Brief literature review
2.1. Indoor environmental quality assessment

IEQ assessment can be conducted using occupant surveys [5,28-30],
personal monitoring [31-33], and sensor measurements [34-36]. Sur-
veys provide subjective IEQ evaluation from occupant perspectives;
however, survey design requires systematic effort to avoid bias and
confusion, and the results can not be updated frequently due to user
fatigue. Several online or mobile tools have been developed to allow
users to vote their thermal or lighting preferences in real time [17,28];
however, the responses may reveal only subjective perceptions, like
“the air is stale”, but it rarely gives hints about the causes, such as
increased indoor pollution caused by low outdoor air flow rate or un-
pleasant thermal environment due to malfunctioning mechanical sys-
tems.

Objective measurements, taken by static or mobile sensors during
daily operation or performance commissioning, can accurately depict

o Lighting control

o Indoor environment
assessment

269

building environment and diagnose potential faults. Static sensors are
deployed in a space to continuously monitor environmental parameters
[1]; nevertheless, limited by cost, the deployment is often sparse in
locations or absent, especially for expensive sensors like CO,. In addi-
tion, while indoor environment is often inhomogeneous and un-
predictable, the stationary sensors may not always be deployed in the
optimal locations to reflect indoor environment. Personal monitoring
systems, such as using infrared thermography [31] and physiological
measurements [32,33,37] can offer assessment of individual comfort
and inform building operation system of proper adjustments in real-
time; however, they require users to be equipped with special instru-
ments or sensors and may involve privacy concerns. For some IEQ
parameters like indoor air quality, the effect on productivity and health
may be long-term and cannot be readily captured by physiological
measurements.

Mobile carts, such as an instrumented chair-like cart [34] and the
IEQ cart [35,36] can hold multiple sensors to take measurements si-
multaneously at a given location. While the results are comprehensive,
the carts often require considerable labor cost and manual navigation.
Several studies exist to deploy robots for monitoring and identifying
pollutants both indoor and outdoor [38-41]; however, the methods do
not distinguish the global trend of physical parameters from their local
variations, which might lower the estimation accuracy, and the results
have not been validated against a ground truth, which requires a dense
sensor network for comparison.

2.2. Continuous interpolation from discrete measurements

Data from static or mobile sensor measurements is highly sparse and
requires interpolation for informative visualization. Spatial interpola-
tion is a well-studied topic in geostatistical analysis and image pro-
cessing communities, where methods like Kriging and Markov random
field (MRF) are among the most prominent [22,23]. Kriging has also
been combined with Gaussian MRF [42], Bayesian network [43], and
principle component analysis [44] to improve the computational effi-
ciency. In practice, this means that the algorithm can analyze a large
amount of data within limited time span, thus enabling large-scale
sensing.

Since Kriging is efficient with sparse data, it has been generalized to
spatio-temporal interpolation [22,45]. Shape functions have also been
introduced based on finite element mesh generation [46]. Variational
Gaussian-process factor analysis is proposed to model the dynamics of
spatio-temporal data [47]. Prior works assume multiple time series data
from individual sensor stations, which requires continuity in time at a
specific location; but the data from mobile sensing robot poses the
challenge of high sparsity and non-continuity in time and space (Fig. 3).

Differentiated from existing interpolation methods, our method can
efficiently capture spatial and temporal dynamics by constructing
global and local trend estimators based on highly sparse data.
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